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CHAPTER-1

INTRODUCTION & OVERVIEW

 
1.0 Introduction 

Efficiency of algorithm is defined in terms of two parameters i.e time and space.

Time complexity refers to running time of an algorithm and space complexity refers

to the additional space requirement for an algorithm to be executed. Analysis will be

focused on running time complexity as response time and computation time is more

important as computer speed and memory size has been improved by many orders

of magnitude. Time complexity depends on input size of the problem and type of

input.  Based  on  the  type  of  data  input  to  an  algorithm  complexity  will  be

categorized as worst case, average case and best case analysis.

In the last section, linear, quadratic, polynomial and exponential algorithm

efficiency will be discussed. It will help to identify that at what rate run time will

grow with respect of size of the input

1.1 Objective 

• Meaning of Asymptotic notations 

• Computation of Worst case, best case and average case analysis of various 

algorithms

• Comparative analysis of Constant, Logarithmic, Linear, Quadratic and 

Exponential growth of an algorithm 



1.2 Asymptotic Notations 

Def: An asymptote is a line or curve that a graph approaches but does not 

intersect. An asymptote of a curve is a line in such a way that distance between 

curve and line approaches zero towards large values or infinity.

Symbol Name

=> Implies 

 Θ Theta 

Ω Big Omega 

Ο Bigoh notation
ω Small Omega 

o Smalloh notation
Є Belongs to 

1.2.1 Theta (Θ) Notation :

It provides both upper and lower bounds for a given function. 

     (Theta) Notation: means `order exactly'. Order exactly implies a function

is bounded above and bounded below both. This notation provides both minimum

and maximum value for a function. It further gives that an algorithm will take this

much of minimum and maximum time that a function can attain for any input size

as illustrated in figure 1.

 Let g(n) be given function. f(n) be the set of function defined as (g(n)) = 

{f(n): if there exist positive constant c1,c2 and n0 such that 0≤c1g(n)≤f(n) ≤c2g(n) 

for all n, n n0} It can be written as f(n)= (g(n)) or f(n) (g(n)), here f(n) is bounded 



both above and below by some positive constant multiples of (n) for all large values 

of n.

figure 1

Example:

To show that 3n+3 = Θ  (n) we will verify that f(n) g(n) or not with the help of 

the definition i.e (g(n)) = {f(n): if there exist positive constant c1,c2 and n0 such that 

0≤c1g(n)≤f(n) ≤c2g(n) for all n, n >=n0} 

In the given problem f(n)= 3n+3 and g(n)=n to prove f(n) g(n) we have to 

find c1,c2 and n0 such that 0≤c1g(n)≤f(n) ≤c2g(n) for all n, n >=n0 



=> to verify f(n) ≤c2g(n)

            We can write f(n)=3n+3 as f(n)=3n+3 ≤ 3n+3n (write f(n) in terms of

g(n) such that mathematically inequality should be true) ≤6n for all n > 0 c2=6 for 

all n > 0 i.e n0=1 To verify 0≤c1g(n)≤f(n) We can write f(n)=3n+3 3n (again write 

f(n) in terms of g(n) such that mathematically inequality should be true) c1=3 for all 

n, n0=1

 => 3n≤3n+3≤6n for all n n0, n0=1 

i.e we are able to find, c1=3, c2=6 n0=1 such that 0≤c1g(n)≤f(n) ≤c2g(n) for 

all n, n>= n0 So, f(n)= Θ (g(n)) for all n >=1

1.2.2 Big Oh Notation (Ο)

This notation provides upper bound for a given function. O(Big Oh) Notation: mean

`order at most' i.e bounded above or it will give maximum time required to run the

algorithm. For a function having only asymptotic upper bound, Big Oh ‘O’ notation is

used. 

Let  a  given  function  g(n),  O(g(n)))  is  the  set  of  functions  f(n)  defined as

O(g(n))={f(n): if there exist positive constant c and n0 such that 0≤f(n) ≤cg(n) for

all n, n n0} f(n)= O(g(n)) or f(n) O(g(n)), f(n) is bounded above by some positive

constant multiple of g(n) for all large values of n. The definition is illustrated with

the help of figure 2



                                 figure 2

Example : To show 3n2+4n+6=O (n2) we will verify that f(n) g(n) or not with 

the help of the definition i.e O(g(n))={f(n): if there exist positive constant c and n0 

such that 0≤f(n) ≤cg(n) for all n, n n0} 

In the given problem f(n)= 3n2+4n+6 g(n)= n2 To show 0≤f(n) ≤cg(n) for all 

n, n >=n0 f(n)= 3n2+4n+6 ≤ 3n2+n2 for n >=6  ≤4n2 

c=4 for all n>=n0, n0=6 i.e we can identify , c=4, n0=6 So, f(n)=O(n2)

1.2.3 Big Omega Notation (Ω)

This notation provides lower bound for a given function. 

(Big Omega): mean ‘order at least' i.e minimum time required to execute the 

algorithm or have lower bound For a function having only asymptotic lower bound, 

Ω notation is used. 

Let a given function g(n). Ω (g(n))) is the set of functions f(n) defined as Ω (g(n)) 

={f(n): if there exist positive constant c and n0 such that 0≤ cg(n) ≤f(n) for all n, n 

>=n0} 

f(n)= Ω (g(n)) ,f(n) is bounded below by some positive constant multiple of g(n) for 

all large values of n. It is described in the following figure 3.

                        Figure 3



Example : 

To show 2n2+4n+6= Ω (n2) we will verify that f(n) Є g(n) or not with the help 

of the definition i.e Ω (g(n)) ={f(n): if there exist positive constant c and n0 such that

0≤ cg(n) ≤f(n) for all n, n n0} 

In the given problem f(n)= 2n2+4n+6  g(n)= n2 

To show 0≤ cg(n) ≤f(n) for all n, n>= n0 

We can write f(n)= 2n2+4n+6 

0≤2n2≤2n2+4n+6 for n>=0

 c=2 for all n>=n0,

 n0=0 

i.e we are able to find, c=2, n0=0 

So, f(n)= Ω (n2)

1.2.4 Small o Notation (o)

For a function that does not have asymptotic tight upper bound, o (small o) 

notation is used. i.e. It is used to denote an upper bound that is not asymptotically 

tight.

 Let a given function g(n), o (g(n))) is the set of functions f(n) defined as

 o (g(n)) = {f(n): for any positive constant c there exist a constant n0 > 0 such

that 0≤f(n)< cg(n) for all n >=n0}

f(n)= o(g(n)) , f(n) is loosely bounded above by all positive constant multiple 

of g(n) for all large n. It is illustrated in the following figure 4



                             Figure 4

In this figure 4, function f(n) is loosely bounded above by constant c times 

g(n). We can explain this by following example:

1.2.5 Small Omega Notation (ω)

(Small Omega) Notation: For a function that does not have asymptotic tight lower 
bound, ω notation is used. i.e. It is used to denote a lower bound that is not 
asymptotically tight.



 Let a given function g(n). ω (g(n))) is the set of functions f(n) defined as ω (g(n)) = 
{f(n): for any positive constant c > 0 there exist a constant n0 > 0 such that 0≤ 
cg(n) < f(n) for all n >=n0} 
f(n)= ω (g(n)) ,f(n) is loosely bounded below by all positive constant multiple of g(n)
for all large n. It is described in the following figure 5

                                       

In this figure function f(n) is loosely bounded below by constant c times g(n). 
Following example illustrate this notation:

Example:



1.3 Concept of efficiency analysis of algorithm

If we are given an input to an algorithm we can exactly compute the number
of  steps  our  algorithm  executes.  We  can  also  find  the  count  of  the  processor
instructions. Usually, we are interested in identifying the behavior of our program
with respect to  input supplied to the algorithm. Based on type of input, analysis can
be classified as following: 

• Worst Case 

• Average Case 

• Best Case 

In the worst case - we need to look at the input data and determine an upper
bound on how long it will take to run the program. Analyzing the efficiency of an
algorithm in the worst case scenario speaks about how fast the maximum runtime
grow when we increase the input size. For example if we would like to sort a list of n



numbers in ascending order and the list is given in descending order. It will lead to
worst case scenario for the sorting algorithm.

 In average case – we need to look at time required to run the algorithm
where all inputs are equally likely. Analyzing the efficiency of an algorithm speaks
about  probabilistic  analysis  by  which  we  find  expected  running  time  for  an
algorithm. For example in a list of n numbers to be sorted in ascending order, some
numbers may be at their required position and some may be not in order. 

In Best case- Input supplied to the algorithm will  be almost similar to the
format in which output is expected. And we need to compute the running time of an
algorithm. This analysis will be referred as best case analysis. For example we would
like  to  sort  the  list  of  n  numbers  in  ascending  order  and  the  list  is  already  in
ascending order.

For example: Consider the linear search algorithm in which we are required to
search an element from a given list of elements, let’s say size of the list is n. Input:
An array of n numbers and an element which is required to be searched in the given
list Output: Number exists in the list or not. Algorithm: 
1. Input the size of list i.e. n 
2. Read the n elements of array A 
3. Input the item/element to be searched in the given list. 
4. for each element in the array i=1 to n 
5. if A[i]==item 
6. Search successful, return 
7. if i==n+1 
8. Search unsuccessful. 
9. Stop 

Efficiency analysis of the above algorithm in respect of various cases is as
follows: 
Worst Case: In respect of example under consideration, the worst case is when the
element to be searched is either not in the list or found at the end of the list. In this
case algorithm runs for  longest  possible time i.e  maximum running time of  the
algorithm depends on the size of an array so, running time complexity for this case
will be O(n). 

Average case: In this case expected running time will be computed based on the
assumption that probability of occurrence of  all  possible input is equal  i.e  array
elements could be in any order. This provides average amount of time required to
solve a problem of size n. In respect of example under consideration, element could
be found at random position in the list. Running time complexity will be O(n).

Best Case: In this the running time will be fastest for given array elements of size n
i.e. it gives minimum running time for an algorithm. In respect of example under
consideration, element to be searched is found at first position in the list. Running
time complexity for this case will be O(1).



1.4 COMPARASION OF EFFICIENCIES OF AN ALGORITHM

(a) 1 Constant Time When instructions of program are executed 

once or at most only a few times , then the 

running time complexity of such algorithm is 

know as constant time. it is independent of the 

problem‟s size. It is represented as O(1). For 

example, linear search best case complexity is 

O(1)
(b) log n Logarithmic The running time of the algorithm in which large

problem is solved by transforming into smaller 

sizes sub problems is said to be Logarithmic in 

nature. In this algorithm becomes slightly 

slower as n grows. It does not process all the 

data element of input size n. The running time 

does not double until n increases to n2. It is 

represented as O(log n). For example binary 

search algorithm running time complexity is 

O(log n).
( c) n linear In this the complete set of instruction is 

executed once for each input i.e input of size n 

is processed. It is represented as O(n). This is 

the best option to be used when the whole input

has to be processed. In this situation time 

requirement increases directly with the size of 

the problem. For example linear search Worst 

case complexity is O(n).
(d) n2 Quadratic Running time of an algorithm is quadratic in 

nature when it process all pairs of data items. 

Such algorithm will have two nested loops. For 

input size n, running time will be O(n2). 

Practically this is useful for problem with small 

input size or elementary sorting problems. In 

this situation time requirement increases fast 

with the size of the problem. For example 

insertion sort running time complexity is O(n2).
(e) 2n Exponential Running time of an algorithm is exponential in 

nature if brute force solution is applied to solve 

a problem. In such algorithm all subset of an n- 



element set is generated. In this situation time 

requirement increases very fast with the size of 

the problem. For input size n, running time 

complexity expression will be O(2n).For example

Boolean variable equivalence of n variables 

running time complexity is O(2n). Another 

familiar example is Tower of Hanoi problem 

where running time complexity is O(2n).

For large values of n or as input size n grows, some basic algorithm running time 
approximation is depicted in following table. As already discussed, worst case 
analysis is more important hence O Big Oh notation is used to indicate the value of 
function for analysis of algorithm.

n Constant Logarithmi

c

Linear Quadratic Exponenti

al
O(1) O(log n) O(n) O(n2) O(2n)

1 1 1 1 1 2
2 1 1 2 4 4
4 1 2 4 16 16
8 1 3 8 64 256
10 1 3 10 102 103

102 1 6 102 104 1030

103 1 9 103 106 10301

104 1 13 104 108 103010

The running time of an algorithm is most likely to be some constant multiplied by 
one of above function plus some smaller terms. Smaller terms will be negligible as 
input size n grows. Comparison given in above table has great significance for 
analysis of algorithm.

ONE-DIMENSIONAL ARRAY:

An array is a collection of variables of the same type that are referenced by a 
common name. In C, all arrays consists of contiguous memory locations. The lowest 
address corresponds to the first element, and the highest address to the last 
element. Arrays may have from one to several dimensions. A specific element in an 
array is accessed by an index.

One Dimensional Array:

The general form of single-dimension array declaration is:



Type variable-name[size];
Here, type declares the base type of the array, size defines how many elements the 
array will hold.
For example, the following declares as integer array named sample that is ten 
elements long
int sample[10];
In C, all arrays have zero as the index of their f irst element. This declares an 
integer  array that has ten elements, sample[0] through sample[9]

Example 1:
/* To find the average of 10 numbers */
# include <stdio.h>
main()
{
int i, avg, sample[10];
for (i=0; i<10; i++)
{
printf (“\nEnter number: %d “, i);
scanf (“%d”, &sample[i]);
}
avg = 0;
for (i=0; i<10; i++)
avg = avg + sample[i];
printf (“\nThe average is: %d\n”, avg/10);
}



Example:

main ()
{
int t, i, num [3][4];
for (t=0; t<3; t++)
for (i=0; i<4; ++i)
num [t][i] = (t * 4) + i + 1;
for (t=0; t<3; t++)
{
for (i=0; i<4; ++i)
printf (“%3d”, num[t][i]);
printf (“\n”);
}
}
the graphic representation of a two-dimensional array in memory is:

byte = sizeof 1st Index * sizeof 2nd Index * sizeof (base type)
Size of the base type can be obtained by using size of operation.
returns the size of memory (in terms of bytes) required to store an integer object.
sizeof (unsigned short) = 2
sizeof (int) = 4
sizeof (double) = 8
sizeof (float) = 4
assuming 2 byte integers as integer with dimension 4, 3 would have

N - dimensional array or multi dimensional array:
This type of array has n size of rows, columns and spaces and so on. The syntax 
used for declaration of this type of array is as follows:
Data type array name[s1] [s 2] … … … [sn];
In this sn is the nth size of the array.

Array Initialization:
The general form of array initialization is:
Type_spec ifier array_name[size 1]…. [size N] = { value _list};



The value list is a comma_separated list of constants whose type is compatible with 
type_specifier.
Example 1:
10 element integer array is initialized with the numbers 1 through 10 as:
int I[10] ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
i.e., I[0] will have the value 1 and
……….
……….
I[9] will have the value 10
Character arrays that hold strings allow a shorthand initialization that takes the 
form:
c har array _name[s ize] = “string” ;

POINTER-ARRAYS:

4.1.1. Pointers and Arrays: 

There is a close association between pointers and arrays. Let us consider the 
following statements: 

int x[5] = {11, 22, 33, 44, 55}; 
int *p = x; 

The array initialization statement is familiar to us. The second statement, array 
name x is the starting address of the array. Let we take a sample memory map as 
shown in figure 4.2.
From the figure 4.2 we can see that the starting address of the array is 1000. When 
x is an array, it also represents an address and so there is no need to use the (&) 
symbol before x. We can write int *p = x in place of writing int *p = &x[0]. 
The content of p is 1000 (see the memory map given below). To access the value in 
x[0] by using pointers, the indirection operator * with its pointer variable p by the 
notation *p can be used



The increment operator ++ helps you to increment the value of the pointer variable
by the size of the data type it points to. Therefore, the expression p++ will 
increment p by 2 bytes (as p points to an integer) and new value in p will be 1000 +
2 = 1002, now *p will get you 22 which is x[1]. 
Consider the following expressions: 
*p++; 
*(p++); (*p)++; 
How would they be evaluated when 
the integers 10 & 20 are stored at 
addresses 1000 and 1002 
respectively with p set to 1000. 

p++ : The increment ++ operator 
has a higher priority than the 
indirection operator * . Therefore p is 
increment first. The new value in p is 
then 1002 and the content at this 
address is 20. 

*(p++): is same as *p++. 
(*p)++: *p which is content at address 1000 (i.e. 10) is incremented. Therefore (*p)
++ is 11. 
Note that, *p++ = content at incremented address. 

Example: 
#include <stdio.h> 



main() 
{ 
int x[5] = {11, 22, 33, 44, 55}; 
int *p = x, i; /* p=&x[0] = address of the first element */ 
for (i = 0; i < 5; i++) 
{ 
printf (“\n x[%d] = %d”, i, *p); /* increment the address*/ 
p++; 
} 
}
 Output:
x [0] = 11 x [1] = 22 x [2] = 33 
x [3] = 44 x [4] = 55 

The meanings of the expressions p, p+1, p+2, p+3, p+4 and the expressions *p, 
*(p+1), *(p+2), *(p+3), *(p+4) are as follows:

P = 1000

 P+1 = 1000 + 1 x 2 = 1002 

P+2 = 1000 + 2 x 2 = 1004 

P+3 = 1000 + 3 x 2 = 1006

 P+4 = 1000 + 4 x 2 = 1008

*p = content at address 1000 = x[0] 

*(p+1) = content at address 1002 = x[1] 

*(p+2) = content at address 1004 = x[2] 

*(p+3) = content at address 1006 = x[3] 

*(p+4) = content at address 1008 = x[4]



CHAPTER-2:LINKED LISTS

Introduction to Linked List: 

A linked list is a linear collection of data elements, called nodes, where the linear order is given by means of 
pointers.Each node is divided into two parts: 
1. The first part contains the information of the element and 
2. The second part contains the address of the next node (link /next pointer field) in the list. 
The data items in the linked list are not in consecutive memory locations. They may be anywhere, but the accessing of 
these data items is easier as each data item contains the address of the next data item. 

   REPRESENTATION OF SINGLE LINKED LIST:

In static representation (arrays),  the memory is allotted as per the specification and it  is fixed. It  is not possible to

allocate additional memory or to delete memory as needed. The advantage of dynamic representation is allocation and

de-allocation of memory can be done as needed using pointers. It is not only used for efficient memory management but

also for faster processing of data. 

Operations on linked lists
 The most common operations performed on Linked list are

• Checking whether the list is empty

• Traversing the process or visit all elements of list

• Determining the size (i.e., the number of elements) of the list;

• Modifying the content of the node

• Inserting a node to list

• Removing a specific node from list

Node creation in single linked list:
A node of single linked list is created using self-referential structure.   A Self-referential structure is a structure which 
includes at least one member that is a pointer to the same structure type

Node declaration in C language:

struct node
{



    int data;
    struct node *next;
}*head;

 

In the above example *next is a self referential because it is referencing to struct node type.

Linked List with three nodes
 

111                         222                       333

Checking list is empty or not:  If the address of the head node is null, then the list is said to be empty

TRAVERSING  

To display the elements of an existing linked list, opt the following procedure 

• If  list is empty then return NULL 

• Starting from the head node of the list the elements are displayed in sequence one after the other up to last node. 
The last node of linked list pointer filed (or) address filed contains NULL value.

Algorithm to traverse the list:

Step 1: Let  r=head

Step 2: While r <> NULL

Step 3: Display the data of r

Step 4:  r= r-> next

Step 5: End while

Step 6:Stop

 Algorithm to check node is empty

Step 1: Let r= head
Step 2: if r=NULL then Display List is 
empty and execute Step 5
Step 3: Confirm List is not empty
Step 4: Stop

10 40222 333 80 null



 COUNTING NUMBER OF ELEMENTS 

For counting the elements of an existing linked list, opt the following procedure
• If  list is empty then NULL is returned
• Counter variable is initially initialized with zero
• Starting from the head node of the list, the elements are counted in sequence one after the other up to last node 
• The last node of linked list pointer filed (or) address filed contains NULL value.
• Display the value of counter variable

Modifying the content of node: In order to modify the content of a node, search for the node based on its content and
then update it.
 

 Algorithm to Update a node:

Step 1:  Accept existing value ‘ e’ and a new value ‘n’ 

to update node

Step 2: Let  r=head

Step 3: Traverse the list, till the value of node = e

Step 4:  If found, then update the value of e with n

Step 5: Stop

 Algorithm to count the number of 

elements in the list:

Step 1: Let  r=head:  Let  count = 0

Step 2: While r <> NULL

Step 3: Display the data of r

Step 4:  r= r-> next

Step 5: count = count + 1

Step 6: End while

Step 7: Display the count value

Step 8: stop



Inserting an Element to Single Linked List:

               Appending means adding an element at the end of  list.  Add new element after the last node, such that the
newly added node becomes the last node of the list.

Adding of an element can be done in 3 ways
1. Adding an element before first node
2. Adding an element after last node
3. Adding an element in  particular position

Initially consider the single linked list as lelow

Linked list 

     111         222

         

 Insertion of node at First

New node

   

     100        111 222

Insertion of node at last:

 New node

                  111   222                       333

Inserting node with data 60 in between 40 and 80

10 40222 333 80 null

5 10111 222

33

10 40222 null

40 null



 New node

             111                           222                          444                        333

 
 
 

Deleting  an Element from Single Linked List:

Algorithm to Add node after last node

Step 1: Let n be the new node with data

Step 2: Let  last->next = n           (new 

node)

Step 3: let  last node be n i.e new node

Step 4: Stop 

Algorithm to Add node before first node

Step 1: Let n be the new node with data

Step 2: Let n->next = first node (header

node)

Step 3: let  first node be n i.e header 

node

Algorithm to Add node after required 

position

Step 1: Let n be the new node with data

Step 2: Accept the position of insertion 

into ‘pos’

Step 3: let count =1:  r= first

Step 4:  While  count <= pos

Step 5:  count=cpunt+1:   r= r->next 

Step 6:  End While

Step 7: n->next = r-> next

Step 8: r->next = n

10 40222 444 60 333

l
80 null



       Deletion operation in single linked list is of 3 ways 
(a) Deleting header node
(b) Deleting last node
(c) Deleting a particular node

Deleting starting node:

 First node Last node

             111                           222                            333                             444
First node Last node

    

                           222                          333                        444

Deleting Last node: Last node

     
  111                           222                            333                             444

Last node

111                           222                            333                             

Deleting node with data 40

10 40222 333

444
60 444 80 null

40 333

444
60 444 80 null

10 40222 333

444
60 444 80 null

10 4022

2

33

34
60 null

10 40222 333

444
60 444 80 null



111 222 333 444

 

                   111                                333                           444

 

 

 

Algorithm to delete header node

Step 1: Let  r=head;  /* r contains header node 

information */

Step 2: Let  r1=head->next; /* r1 contains second node 

information */

Step 3: Delete node r

Step 4: head=r1;

Step 5:  Stop

10 333 60 444 80 null

Algorithm to delete last node

Step 1: Let  r=head;  /* r contains header node 

information */

Step 2:While r ->next ->next <> last node

Step 3:r=r->next

Step 4:End While

Step 5:r=last;

Step 6:Delete last node

Step 7:r->next=NULL

Step 8:Stop



 
 

CIRCULAR LINKED LIST

• In linear linked lists if a list is traversed (all the elements visited) an external pointer to the list must be preserved 

in order to be able to reference the list again.

Algorithm to delete  a Particular node

Step 1: Let  r=head;  /* r contains header node 

information */

Step 2:Let  s  the data of a node to delete

Step 3:While r ->next ->datat <> s

Step 4:r=r->next;

Step 5:End While

Step 6:if r==NULL

Step 7:Display node not found

Step 8:else

Step 9:K=r->next

Step 9: r->next=k->next

Step 10: r=r->next ;

Step 11:Delete r

Step 11:Stop



• A circular list is very similar to the linear list where in the circular list the pointer of the last node points to the first 

node.

• Circular linked lists can helps to traverse the same list again and again if needed. 

Example

           111                        222                             333                         444

Operations on linked lists:

The most common operations performed on Circular Linked list are
• Checking whether the list is empty;
• Traversing the process or visit all elements of list
• Determining the size (i.e., the number of elements) of the list

• Inserting a node to list

• Removing a specific node from list

Node creation in circular  linked list:

The node creation in circular linked list is same as that of single linked list.

C  hecking list is empty or not:  If the address of the head node is null, then the list is said to be empty

 Algorithm to check node is empty

Step 1: Let r= head
Step 2: if r=NULL then Display List is 
empty and execute Step 5
Step 3: Confirm List is not empty
Step 4: Stop

10 40222 333 60 444 80 111



TRAVERSING  
To display the elements of an existing circular linked list, opt the following procedure 

• If  list is empty then return NULL 
• Starting from the head node of the list, the elements are displayed in sequence one after the other upto 

the last node. The last node of linked list points in turn to fist node.

 COUNTING NUMBER OF ELEMENTS 

For counting the elements of an existing linked list, opt the following procedure
• If  list is empty then NULL is returned
• Counter variable is initially initialized with zero

Algorithm to traverse the list:

Step 1: Let  r=head

Step 2: do

Step 3: Display the data of r

Step 4:  r= r-> next

Step 5: while r<>head

Step 6:Stop



• Starting from the head node of the list, the elements are counted in sequence one after the other up to last node 
• The last node of linked list pointer filed (or) address filed contains NULL value.
• Display the value of counter variable

   Inserting An Element To A circular Linked List:

Adding of an element can be done in 3 ways
1. Adding an element before first node
2. Adding an element after last node
3. Adding an element in a particular position

Insertion at the front of single circular linked list:

111 222 333 444

 Algorithm to count the number of 

elements in the list:

Step 1: Let r=head:  Let count = 0

Step 2:do

Step 3: Display the data of r

Step 4:  r= r-> next

Step 5: count = count + 1

Step 6:  while r <> head

Step 7: Display the count value

Step 8: stop

10 40222 333 60 444 80 111



555   New Node 111 222 333 444

Insertion node with 70 at the middle of single circular linked list:

111 222 333 444

111 222 777 333 444

Insertion 90 at the end of single circular linked list:

111 222 333 444
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90 11
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10 40222 333 60 444 80 111

10 40222 777

3
60 444 80 111

70 333

4

10 40222 333 60 444 80 111



111 222 333 444 555

 

Algorithm to Add node before first node

Step 1: Let n be the new node with data

Step 2: Let n->next = first node (header

node)

Step 3: let  first node be n i.e header 

node

Step 4:last->next=n;( header node)

Step 4: Stop 

Algorithm to Add node after last node

Step 1: Let n be the new node with data

Step 2: Let  last->next = n           (new 

node)

Step 3: let  last node be n i.e new node

Step 4:n->next=first (i.e last node 

pointing to first node such that the list 

becomes circular)

Algorithm to Add node after required 

position

Step 1: Let n be the new node with data

Step 2: Accept the position of insertion 

into ‘pos’

Step 3: let count =1:  r= first

Step 4:  While  count <= pos

Step 5:  count=count + 1:   r= r->next 

Step 6:  End While

Step 7:n->next=r->next

Step 8: r->next = n

10 40222 333

777

3

80 555

944

4

90 111
60 444

333

4



DELETING  AN ELEMENT FROM A  CIRCULAR LINKED LIST:

       Deletion operation in circular linked list is of 3 ways
(a) Deleting header node
(b) Deleting last node
(c) Deleting a particular node

Deletion at the first node of single circular linked list:

After 

deletion:

                                    First node to delete      
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1
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2
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3
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4
0

5
0
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Deletion at the end of single circular linked list:
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After deletion:

Algorithm to delete header node

Step 1: Let  r=head;  /* r contains header node 

information */

Step 2: Let  r1=head->next; /* r1 contains second node 

information */

Step 3: Delete node r

Step 4:last->next=r1; /* Second node of list  */

Step 5: head=r1;

Step 6:  Stop

Algorithm to delete last node

Step 1: Let  r=head;  /* r contains header node 

information */

Step 2:While r ->next ->next <> last node

Step 3:r=r->next

Step 4:End While

Step 5:r=last;

Step 6:Delete last node

Step 7:r->next=first   /* last but one node becomes last 

and it points to first node such that list becomes circular */

Step 8:Stop
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DOUBLE LINKED LIST:

A doubly linked list is a list that contains links to next and previous nodes. In single linked list traversing can be done in 
one way, whereas  double linked list allows traversing in both ways, that is in forward direction as well as backward 
direction.

Operations on linked lists:

The most common operations performed on Double Linked list are
• Checking whether the list is empty

•  Traversing i.e.,  the process of visiting all elements of list(in both directions )

•  Determining the size (i.e., the number of elements) of the list;

• Inserting a node to list

• Removing a specific node from list

Algorithm to delete  a Particular node

Step 1: Let  r=head;  /* r contains header node 

information */

Step 2:Let  s  the data of a node to delete

Step 3:While r ->next ->datat <> s

Step 4:r=r->next;

Step 5:End While

Step 6:if r==NULL

Step 7:Display node not found

Step 8:else

Step 9:K=r->next

Step 9: r->next=k->next

Step 10: r=r->next ;

Step 11:Delete r

Step 11:Stop



Node creation in Double linked list:
A node of double linked list is created using self-referential structure.   A Self-referential structure is a structure which 
includes at least two members that are pointers to the same structure type.  One pointer pointing to the previous node 
and another pointer pointing to the next node.

Node declaration in C language

struct node
{
    int data;
    struct node *next;
    struct node *prev;
}*head;

Double linked list

               

                  111                                          222

Checking list is empty or not:  If the address of the head node is null, then the list is said to be empty

 Algorithm to check list is empty

Step 1: Let  r= head->next  and  s=head->prev
Step 2: if r== NULL and s==NULL then Display list is 
empty and execute Step 4
Step 3: Confirm List is not empty
Step 4: Stop

null 10 222 111 40 null



TRAVERSING  
To display the elements of an existing double linked list, opt the following procedure 

• If  list is empty then return NULL 
• Starting from the head node of list the elements are displayed in sequence one after the other up to last 

node. 

TRAVERSING THE LIST THROUGH FORWARD POINTER

TRAVERSING THE LIST THROUGH BACKWARD POINTER

Algorithm to traverse the list:

Step 1: Let  r=head->next

Step 2: While r <> NULL

Step 3: Display the data of r

Step 4:  r= r-> next

Step 5: End while

Step 6:Stop

Algorithm to traverse the 

list:

Step 1:let  r=last node;

Step 2:While r->prev<> 

NULL

Step 3:Display the data of 

r

Step 4:r=r->prev



COUNTING NUMBER OF ELEMENTS 

For counting the elements of an existing linked list, opt the following procedure
• If  list is empty then NULL is returned
• Counter variable is initialized to zero
• Starting from the head node of the list, the elements are counted in sequence one after the other up to last node 
• Display the value of counter variable

COUNTING NUMBER OF ELEMENTS THROUGH FORWARD POINTER

Note: In the Similar manner counting of elements can also be done through backward pointer

Inserting an Element to Double Linked List:

Adding of an element can be done in 3 ways
1. Adding an element before first node
2. Adding an element after last node
3. Adding an element in a particular position

Insertion at the front of double linked list:

 Algorithm to count the number of 

elements in the list:

Step 1: Let r=head:  Let count = 0

Step 2: While r ->next<> NULL

Step 3: Display the data of r

Step 4:  r= r-> next

Step 5: count = count + 1

Step 6: End while

Step 7: Display the count  value

Step 8: stop



Hea

d

      10       20        30       40       50 Null

New 

node

Current 

node
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      10       20        30       40       50 Null
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node

Insertion at the middle of double linked list:

    Previous 

node
     New 

node



Hea

d

      10       20        30       40       50 Null

Prev node

Insertion at the end of double linked list:

    
     New node

Algorithm to Add node before first node

Step 1: Let n be the new node with data

Step 2: Let n->next = first node (header

node)

Step 3:n->prev=NULL;

Step 4: let first node be n i.e header 

node

Step 5:Stop

Algorithm to Add node after last node

Step 1: Let n be the new node with data

Step 2: Let  last->next = n           (new node)

 Step 3:Let n->prev=last;        (new node previous pointer 

pointing to last node )

Step 4: Let n->next = Null

Step 5: let  last node be n i.e new node

Step 6: Stop 

Algorithm to Add node at required position

Step 1: Let n be the new node with data

Step 2: Accept the position of insertion into ‘pos’

Step 3: let count =1:  r= first

Step 4:  While  i <= pos

Step 5:  i = i + 1:   r= r->next 

Step 6:  EndWhile

Step 7: n->next = r;

Step 8:n->prev=r->prev

Step 9: Stop



DELETING  AN ELEMENT FROM A  DOUBLE LINKED LIST:

       Deletion operation in Double linked list  is of 3 ways 
(a) Deleting header node
(b) Deleting last node
(c) Deleting a particular node
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Deleting the last node in double linked list:

             

Null
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point

er
Null

Algorithm to delete header node

Step 1: Let  r=head;  /* r contains header node 

information */

Step 2: Let  r1=head->next; /* r1 contains second node 

information */

Step 3:r1->prev=NULL

Step 4: Delete node r

Step 5: head=r1;

Algorithm to delete last node

Step 1: Let  r=head;  /* r contains header node 

information */

Step 2:While r ->next ->next <> last node

Step 3:r=r->next

Step 4:End While

Step 5:Delete the last node

 Step 6:last=r;

Step 7:last->next=NULL

Step 8:Stop



CIRCULAR DOUBLE LINKED LIST:

Doubly Circular linked list has both the properties of doubly linked list and circular linked list. Two consecutive elements 

are linked by previous and next pointer and the last node points to first node by next pointer and also the previous 

pointer of the head node points to the tail node

Algorithm to delete a Particular node

Step 1: Let  r=head;  /* r contains header node 

information */

Step 2:Let  s  the data of a node to delete

Step 3:While r ->data <> s

Step 4:r=r->next;

Step 5:End While

Step 6:if r==NULL

Step 7:Display node not found

Step 8:else

Step 9:r->prev->next=r->next

Step 10:r->next->prev=r->prev

Step 11:Delete r

Step 12:Stop



APPLICATIONS OF LINKED LISTS:

• Linear data structures such as stacks and queues are easily executed with a linked list.
• They reduce access time and may expand in real time without memory overhead.

      1       2        3       4
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• Circular linked list are used is a timesharing problem solved by the operating system.
In a timesharing environment, the operating system must maintain a list of present users and must alternately 
allow each user to use a small slice of CPU time, one user at a time. The operating system will pick a user, allots 

CPU time and then move on to the next user.

• Applications of Doubly linked list can be
- A great way to represent a deck of cards in a game.
- The browser cache which allows you to hit the BACK button (a linked list of URLs) 
- Applications that have a Most Recently Used (MRU) list 
- A stack, hash table, and binary tree can be implemented using a doubly linked list.  

ASSIGNMENT QUESTIONS:

• Given a circular linked list, how to find the longest sequence of no-repeated-value nodes?
• What is the difference between a de-que and a doubly linked list?

• Defend that pointer based linked list is better than Array based linked list. 

• How to convert a doubly circular linked list into a singly circular linked list?

https://www.quora.com/Given-a-circular-linked-list-how-do-I-find-the-longest-sequence-of-no-repeated-value-nodes
https://www.quora.com/How-do-I-convert-a-doubly-circular-linked-list-into-a-singly-circular-linked-list
https://www.quora.com/What-is-the-difference-between-a-deque-and-a-doubly-linked-list

