Unit-2

Stacks: Introduction-Definition-Representation of Stack-Operations on Stacks-
Applications of Stacks.

Queues: Introduction, Definition- Representations of Queues- Various Queue
Structures- Applications of Queues. Tables: Hash tables

Stacks:
Introduction-

A stack is a container of objects that are inserted and removed according to the
last-in first-out (LIFO) principle. In the pushdown stacks only two operations are
allowed: push the item into the stack, and pop the item out of the stack. A stack is
a limited access data structure - elements can be added and removed from the
stack only at the top. push adds an item to the top of the stack, pop removes the
item from the top. A helpful analogy is to think of a stack of books; you can remove
only the top book, also you can add a new book on the top.

A stack may be implemented to have a bounded capacity. If the stack is full and
does not contain enough space to accept an entity to be pushed, the stack is then
considered to be in an overflow state. The pop operation removes an item from the
top of the stack. A pop either reveals previously concealed items or results in an
empty stack, but, if the stack is empty, it goes into underflow state, which means no
items are present in stack to be removed.

Representation of a Stack using Arrays:

Let us consider a stack with 6 elements capacity. This is called as the size of the
stack. The number of elements to be added should not exceed the maximum size
of the stack. If we attempt to add new element beyond the maximum size, we will
encounter a stack overflow condition. Similarly, you cannot remove elements
beyond the base of the stack. If such is the case, we will reach a stack underflow
condition.

When a element is added to a stack, the operation is performed by push().

4 4 4 4
- 3 3 3 3
TOP
2 - 2 2 2
33 TOP
22 1 22 1 T ﬂp‘" 1 1
—
o 0 0 0
11 11 11 ToP
Indtial POP POP POP
Staxck
E mplty
Shark
4 4 4 4
| 3 4 —»> 4
TOPR
2 2 » 2z I3 2z
TOR
1 > 1 22 | 22 1
TOP
—»> 0 i1 0 i1 o 11 o
TOP
E mply Insert Insert Inzert
Stack 11 22 I3
procedure:

STACK: Stack is a linear data structure which works under the principle of last in
first out. Basic operations: push, pop, display.

1. PUSH: if (top==MAX), display Stack overflow else reading the data and making
stack [top] =data and incrementing the top value by doing top++.

2. Pop: if (top==0), display Stack underflow else printing the element at the top of
the stack and decrementing the top value by doing the top.

3. DISPLAY: IF (TOP==0), display Stack is empty else printing the elements in the
stack from stack [0] to stack [top].

Linked List Implementation of Stack:

We can represent a stack as a linked list. In a stack push and pop operations are
performed at one end called top. We can perform similar operations at one end of
list using top pointer.

400
data next

\—b 40 x
400 f
=0 |400
300 :T-
zo0 |300

- 200

i00 W 10 |200
100

Stack Applications:

1. Stack is used by compilers to check for balancing of parentheses, brackets and
braces.
2. Stack is used to evaluate a postfix expression.
3. Stack is used to convert an infix expression into postfix/prefix form.
4. In recursion, all intermediate arguments and return values are stored on the
processor’s stack.
5. During a function call the return address and arguments are pushed onto a
stack and on return they are popped off.
In-fix- to Postfix Transformation:
Procedure:
Procedure to convert from infix expression to postfix expression is as follows:
1. Scan the infix expression from left to right.
2. a) If the scanned symbol is left parenthesis, push it onto the stack.
b) If the scanned symbol is an operand, then place directly in the postfix
expression (output).
¢) If the symbol scanned is a right parenthesis, then go on popping all the items
from the stack and place them in the postfix expression till we get the matching
left parenthesis.
d) If the scanned symbol is an operator, then go on removing all the operators from
the stack and place them in the postfix expression, if and only if the precedence of
the operator which is on the top of the stack is greater than (or equal) to the
precedence of the scanned operator and push the scanned operator onto the stack
otherwise, push the scanned operator onto the stack.

Evaluating Arithmetic Expressions:

Procedure:

The postfix expression is evaluated easily by the use of a stack. When a number is
seen, it is pushed onto the stack; when an operator is seen, the operator is applied
to the two numbers that are popped from the stack and the result is pushed onto
the stack.

PROGRAMS:

1: Write a program to convert infix expression to postfix expression and evaluate
postfix expression

PROGRAM:

#include<stdio.h>

#include<string.h>
#include<stdlib.h>
#include<ctype.h>

int st[100],sttop=-1;

void inpost(char [],int,int);

void pushitem(int it);

int popitem();

int stisp(char t);

int sticp(char t);

int main()

{

char in[100],post[100];

int low=0,high;

printf("enter infix exp\n");
scanf("%s",in);

printf("the length is %d\n",strlen(in));
high=strlen(in)-1;

printf("the given expression is %s\n",in);
inpost(in,0,high);

return O;

}

void pushitem(int it)
{

if(sttop==99)

{

printf("stack full\n");
}

st[++sttop]=it;

}

int popitem()

{

intit;

if(sttop==-1)

{

printf("stack empty");
}

return st[sttop--1;

}

void inpost(char in[],int low,int high)
{

int x=0,y=0,z,result=0;

char a,c,post[100];

char t;

pushitem('\0');

t=in[x];

while(t!="0')
{
if(isalnum(t))

{

post[y]=t;

y++;

}

else if(t=="(")

{

pushitem('(');

}

else if(t==")")

{
while(st[sttop]!'='(")
{
c=popitem();
post[yl=c;
y++;
}

c=popitem();

}

else

while(stisp(st[sttop])>=sticp(t))

{

c=popitem();
postlyl=c;
y++;
}
pushitem(t);

}

X++;

t=in[x];

while(sttop!=-1)
{

c=popitem();
postlyl=c;

y++;

}

printf("\n The postfix exp is\n");
for(z=0;z<y;z++)

{

printf("%c",post([z]);

}

}

int stisp(char t)

{

switch(t)

{

case '(":return 10;
case '):return 9;
case '+":return 7;
case '-:return 7;
case "*":return 8;
case '/:return 8;
case "\O":return O;
default:printf("invalid expression");
break;

}

return O;

}

int sticp(char t)

{

switch(t)

{

case '(":return 10;
case ')":return 9;
case '+'ireturn 7;

case '-:return 7;

case "*:return 8;

case '/":return 8§;

case "\O":return O;
default:printf("invalid expression");
break;

}

return O;

}

INPUT/OUTPUT:

gpcetadmin@gpcetadmin-MS-7528:~$ gcc anillinfix.c
gpcetadmin@gpcetadmin-MS-7528:~$./a.out

enter infix exp

5+2

the length is 3

the given expression is 5+2

The postfix exp is

52+

2. Write a program to evaluate a postfix expression

PROGRAM:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<ctype.h>

void pushitem(int it);

int popitem();

int cal(char post[],int,int);

int st[100],sttop=-1;

int main()

{

char post[100];

int low=0,high,result=0;
printf("enter postfix exp\n");
scanf("%s",post);

printf("the length is %d\n",strlen(post));
high=strlen(post)-1;
result=cal(post,low,high);
printf("%d\n",result);

return O;

}

void pushitem(int it)

{

if(sttop==99)

{

printf("stack full\n");

}

st[++sttop]=it;

}

int popitem()

{

int it;

if(sttop==-1)

{

printf("stack empty");
}

return st[sttop--1;

}

int cal(char post[],int low,int high)
{

int m,n,x,y,j=0,len;
len=strlen(post);
while(j<len)

{

if(isdigit(post[j]))

{

x=post[j]-'0";
pushitem(x);

}

else

{

m=popitem();

n=popitem();

switch(post[j])

{

case '+':x=n+m;break;
case '-':x=n-m;break;
case *':x=n*m;break;
case '/":x=n/m;break;
}

pushitem(x);

}

j++;

}

if(sttop>0)

{

printf("no of operands are more than operators\n");
}

else

{

y=popitem();

return vy;

}

return O;

}

INPUT/OUTPUT:
gpcetadmin@gpcetadmin-MS-7528:~$ gedit anilleval.c
gpcetadmin@gpcetadmin-MS-7528:~$ gcc anilleval.c
gpcetadmin@gpcetadmin-MS-7528:~$./a.out

enter postfix exp

52+
the length is 3
7

gpcetadmin@gpcetadmin-MS-7528:~$%

3. Write a program to implement stack using array

PROGRAM:

#include<stdio.h>
#include<stdlib.h>

int t=-1,n;

int starr[20];

void pushele(int ele);

int popele();

void display();

int main()

{

int num1=0,num2=0,choice;
printf("enter size of stack\n");
scanf("%d",&n);

while(1)

{

printf("\n1l.push");
printf("\n2.pop");
printf("\n3.display");

printf("\n 4.exit");

printf("\n enter u r choice");
scanf("%d",&choice);

switch(choice)

{

case l:printf("enter element to be pushed\n");

scanf("%d",&num1l);

pushele(numl);
break;
case 2:num2=popele();
printf("element deleted=%d\n",num?2);
break;
case 3:display();
break;
case 4:exit(0);
break;

default:printf("invalid choice");

break;
}
}
return O;
}

void pushele(int ele)
{

if(t==n-1)

{

printf("stack full\n");

else

{

starr[++t]=ele;
}
}

int popele()

printf("stack empty");
}

return starr[t--];

}

void display()

{

int i;

for(i=t;i>=0;i--)

{
printf("%d\t",starr[i]);
}

}

INPUT/OUTPUT:
gpcetadmin@gpcetadmin-Veriton-Series:~$ gedit sta.c

gpcetadmin@gpcetadmin-Veriton-Series:~$ gcc sta.c

gpcetadmin@gpcetadmin-Veriton-Series:~$./a.out
enter size of stack

3

1.push

2.pop

3.display

4.exit

enter u r choicel

enter element to be pushed

5

1.push

2.pop

3.display

4.exit

enter u r choicel

enter element to be pushed

10

1.push

2.pop

3.display

4.exit

enter u r choicel

enter element to be pushed

15

1.push

2.pop

3.display

4.exit

enter u r choicel

enter element to be pushed
20

stack full

1.push

2.pop

3.display

4.exit

enter u r choice3

15 10 5

1.push

2.pop

3.display

4 .exit

enter u r choice2

element deleted=15

1.push

2.pop

3.display

4.exit

enter u r choice3

10 5

1.push

2.pop

3.display

4.exit

enter u r choice 4

4. Write a program to implement stack using linked list
PROGRAM:
#include<stdio.h>
#include<stdlib.h>
struct stpoint

{

int ele;

struct stpoint *I;

G

int i;

void pushele(int i);
int popele();

void displayele();

int main()

{

int n um1=0,num2=0,choice;
while(1)

{

printf("\n 1. push");
printf("\n 2.pop");
printf("\n 3.display");

printf("\n 4.exit");

printf("enter u r choice");
scanf("%d",&choice);
switch(choice)
{
case l:printf("enter element to be pushed\n");
scanf("%d",&num1);
pushele(num1l);
break;
case 2:num2=popele();
printf("element deleted=%d\n",num?2);
break;
case 3:displayele();
break;
case 4:exit(1);
break;

default:printf("invalid choice");

break;
}
}
return O;
}
void pushele(int j)
{

struct stpoint *m;

m=(struct stpoint*)malloc(sizeof(struct stpoint));
m->ele=j;

m->|=t;

t=m;

return;

int popele()
{
if(t==NULL)
{
printf("stack empty\n");
}

else

{

int i;
i=t->ele;
t=t->I;
return i;

}

return O;

}

void displayele()

{

struct stpoint *pointer=NULL;
pointer=t;
while(pointer!'=NULL)

{

printf("%d\t",pointer->ele);

pointer=pointer->I;

INPUT/OUTPUT :
gpcetadmin@gpcetadmin-Veriton-Series:~$ gcc stl.c

gpcetadmin@gpcetadmin-Veriton-Series:~$./a.out

1. push

2.pop

3.display

4.exit

enter u r choicel

enter element to be pushed

5

1.push

2.pop

3.display

4.exit

enter u r choicel

enter element to be pushed

10

1.push
2.pop
3.display

4 .exit

enter u r choicel
enter element to be pushed

15

1. push

2.pop

3.display

4.exit

enter u r choicel

enter element to be pushed

20

1.push

2.pop

3.display

4.exit

enter u r choice3

20 15 10 5

1.push

2.pop

3.display

4.exit

enter u r choice2

element deleted=20

1.push

2.pop

3.display

4.exit

enter u r choice3

15 10 5

1.push
2.pop
3.display
4.exit

enter u r choice 4

Queues: Introduction

A gqueue is a data structure that is best described as "first in, first out". A queue is
another special kind of list, where items are inserted at one end called the rear
and deleted at the other end called the front. A real world example of a queue is
people waiting in line at the bank. As each person enters the bank, he or she is
"enqueued" at the back of the line. When a teller becomes available, they are
"dequeued" at the front of the line.

Representation of a Queue using Array:

Let us consider a queue, which can hold maximum of five elements. Initially the
gueue is empty.

Queue Empty
FRONT = REAR =0

M

Now, insert 11 to the queue. Then queue status will be:

0 1 2 3 4

11 REAR = REAR + 1 =1
FRONT = 0

F R

Next, insert 22 to the queue. Then the queue status is:

REAR = REAR +1 =2

11 FRONT =0

'
Fsd

-r|
ps)

Again insert another element 33 to the queue. The status of the queue is:

REAR = REAR + 1 = 3

11 FRONT =0

X%
ra

33

_n
)

Now, delete an element. The element deleted is the element at the front of the queue. So the status of
the queue is:

33 REAR = 3
FRONT = FRONT + 1 =1

5]
28]

n—p
—

Again, delete an element. The element to be deleted is always pointed to by the FRONT pointer. So, 22

is deleted. The queue status is as follows:

0 1 2 3 4
33 REAR = 3
FRONT = FRONT + 1 = 2
F R

Now, insert new elements 44 and 55 into the queue. The queue status is:

REAR =5
33 44 55 FRONT = 2

-
=]

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as the rear crossed
the maximum size of the queue (i.e., 5). There will be queue full signal. The queue status is as follows:

REAR =5
33 44 i FRONT = 2

-
=]

Now it is not possible to insert an element 66 even though there are two vacant
positions in the linear queue. To over come this problem the elements of the queue
are to be shifted towards the beginning of the queue so that it creates vacant
position at the rear end. Then the FRONT and REAR are to be adjusted properly. The
element 66 can be inserted at the rear end. After this operation, the queue status is

as follows:

REAR = 4

33 44 55 66 FRONT = 0

f Y

F R

This difficulty can overcome if we treat queue position with index 0 as a position that comes after
position with index 4 i.e., we treat the queue as a circular queue.

Procedure for Queue operations using array:

In order to create a queue we require a one dimensional array Q(1:n) and two
variables front and rear. The conventions we shall adopt for these two variables
are that front is always 1 less than the actual front of the queue and rear always
points to the last element in the queue. Thus, front = rear if and only if there are
no elements in the queue. The initial condition then is front = rear = 0.

The various queue operations to perform creation, deletion and display the
elements in a queue are as follows:

1. insertQ(): inserts an element at the end of queue Q.

2. deleteQ(): deletes the first element of Q.

3. displayQ(): displays the elements in the queue.

Linked List Implementation of Queue: We can represent a queue as a linked
list. In a queue data is deleted from the front end and inserted at the rear end. We
can perform similar operations on the two ends of a list. We use two pointers front
and rear for our linked queue implementation.

fronk rear

10 (200 20 (300 —P 30 (400 5| 40 b 4

100 200 200 400

Applications of Queues:

1. It is used to schedule the jobs to be processed by the CPU.

2. When multiple users send print jobs to a printer, each printing job is kept in the
printing queue. Then the printer prints those jobs according to first in first out
(FIFO) basis.

3. Breadth first search uses a queue data structure to find an element from a
graph.

Disadvantages of Linear Queue:

There are two problems associated with linear queue. They are:

1. Time consuming: linear time to be spent in shifting the elements to the
beginning of the queue.

2.Signaling queue full: even if the queue is having vacant position

DEQUE(Double Ended Queue):

A double-ended queue (dequeue, often abbreviated to deque, pronounced
deck) generalizes a queue, for which elements can be added to or removed from
either the front (head) or back (tail).lt is also often called a head-tail linked list.
Like an ordinary queue, a double-ended queue is a data structure it supports the
following operations: enq_front, enq_back, deq_front, deq_back, and empty.
Dequeue can be behave like a queue by using only enq_front and deq_front , and
behaves like a stack by using only enq_front and deq_rear.

The DeQueue is represented as follows.

front rear

deletion itsertion

insertion S deletion

DEQUE can be represented in two ways they are

1) Input restricted DEQUE(IRD)

2) output restricted DEQUE(ORD)

The output restricted DEQUE allows deletions from only one end and input
restricted DEQUE allow insertions at only one end. The DEQUE can be constructed
in two ways they are

1) Using array

2)Using linked list

Applications of DEQUE:

1. The A-Steal algorithm implements task scheduling for several processors
(multiprocessor scheduling).

2. The processor gets the first element from the deque.

3. When one of the processor completes execution of its own threads it can steal a
thread from another processor.

4. It gets the last element from the deque of another processor and executes it.

Circular Queue:

Circular queue is a linear data structure. It follows FIFO principle. In circular queue
the last node is connected back to the first node to make a circle.

e Circular linked list fallow the First In First Out principle

e Elements are added at the rear end and the elements are deleted at front
end of the queue

e Both the front and the rear pointers points to the beginning of the array.
e |tis also called as “Ring buffer”.
¢ |tems can inserted and deleted from a queue in O(1) time.

Circular Queue can be created in three ways they are
e Using single linked list
e Using double linked list
e []Using arrays

Representation of Circular Queue:

Let us consider a circular queue, which can hold maximum (MAX) of six elements.
Initially the queue is empty.

F R

5 0
i Queuese Empty
4 MAX = &
FRONT = REAR =0
COUNT =0
3 2

Circular Queue

Now, insert 11 to the circular queue. Then circular queue status will be:

F

s 0
H’R
1 FRONT
4 REAR =
COUNT =
2 2

Circular Queue

Ll
e

AR + 1) % & = 1

Insert new elements 22, 33, 44 and 55 into the circular queue. The circular queue status is

FRONT = 0. REAR = 3
REAR = REAR % 6 = 5
COUNT = 35

Circular Queue

Now, delete an element. The element deleted is the element at the front of the circular queue. So, 11 is
deleted. The circular queue status is as follows:

FRONT = (FRONT + 1) % & = 1
REAR = 5
COUNT = COUNT - 1

=4

Circular Quesue

Again, delete an element. The element to be deleted is always pointed to by the FRONT pointer. So, 22
is deleted. The circular queue status is as follows:

R
“u o
5
1 FRONT = (FRONT + 1) % 6 = 2
4 REAR =5
COUNT = COUNT - 1 = 3
F
3

-
=

Circular Queue

Again, insert another element 66 to the circular queue. The status of the circular queue is:

FRONT = 2
REAR = (REAR + 1) % & =0
COUNT = COUNT + 1 = 4
3

Circular Queue

Now, insert new elements 77 and 88 into the circular queue. The circular queue status is:

FRONT = 2, REAR = 2
REAR = REAR % 6 =
COUNT =6

-
<

QA

F

Circular Queue

Now, if we insert an element to the circular queue, as COUNT = MAX we cannot add the element to
circular queue. So, the circular queue is full.

PROGRAMS:

1. Write a program to implement linear queue using arrays .
PROGRAM:
#include<stdio.h>
#include<stdlib.h>
int q[100];

int f=-1,r=-1,n;

int main()

{

int i,choice,item,ri;
printf("enter size\n");
scanf("%d",&n);
while(1)

{

printf("\n l.insertion");

printf("\n 2.deletion");
printf("\n 3. display");
printf("\n 4.exit");
printf("\n enter u r choice");
scanf("%d",&choice);
switch(choice)

{

case l:insert();break;
case 2:delete();break;
case 3:display();break;
case 4:exit(0);break;

default:printf("invalid option\n");

break;
}
}
return O;
}
insert()
{
int item;
if(r==n-1)
{
printf("queue full\n");
}

else if(f==-1 && r==-1)
{

printf("enter item\n");
scanf("%d",&item);
qlrl=item;

}

else

{

r++;

printf("enter item\n");
scanf("%d",&item);
qlr]=item;

}

printf("queue empty");
}

else if(f==r)

{

ri=qlfl;

f=-1;

r=-1;

}

else

ri=q[f];
f++;
}

printf("deleted data = %d",ri);

}

display()

{

inti;
for(i=f;i<=r;i++)
{
printf("%d\t",q[il);
}

}

INPUT/OUTPUT:
gpcetadmin@gpcetadmin-Veriton-Series:~$ gcc Iga.c
gpcetadmin@gpcetadmin-Veriton-Series:~$./a.out
enter size

3

l.insertion
2.deletion
3. display

4 .exit

enter u r choicel
enter item

10

l.insertion
2.deletion

3. display

4.exit

enter u r choicel
enter item

20

l.insertion
2.deletion

3. display

4.exit

enter u r choicel
enter item

30

l.insertion
2.deletion
3. display
4.exit

enter u r choicel

queue full

l.insertion
2.deletion

3. display

4.exit

enter u r choice2

deleted data = 10

l.insertion
2.deletion

3. display

4.exit

enter u r choice3

20 30

l.insertion
2.deletion

3. display
4.exit

enter u r choice

4

2.Write a program to implement linear queue using linked list
PROGRAM:

#include<stdio.h>

#include<stdlib.h>

struct queue

{

int element;

struct queue *next;

b

struct queue *front=NULL;
struct queue *rear=NULL;
void add(int);

int rem();

void display();

int main()

{

int numl,num?2,choice;

while(1)
{
printf("\n 1.insert");
printf("\n 2.delete");
printf("\n 3.display");
printf("\n 4.exit");
printf(*\n enter u r choice");
scanf("%d",&choice);
switch(choice)
{
case l:printf("enter element to be inserted into queue");
scanf("%d",&num1l);
add(num1l);
break;

case 2:num2=rem():

if(num2==-9999)
printf("queue empty");
else
printf("element removed from queue=%d",num?2);
break;
case 3:display();break;
case 4:exit(1);break;
default:printf("invalid choice");break;
}
}

return O;

}

void add(int value)

{

struct queue *ptr=(struct queue*)malloc(sizeof(struct queue));
ptr->element=value;
if(front==NULL)

{

front=rear=ptr;
ptr->next=NULL;

}

else

{

rear->next=ptr;
ptr->next=NULL;
rear=ptr;

}

int rem()

{

int i;
if(front==NULL)
{

return -9999;

}

else

{
i=front->element;
front=front->next;
return i;

}

}

void display()

{

struct queue *ptr=front;
if(front==NULL)

{

printf("queue is empty");
return;

}

else

while(ptr!=rear)

{
printf("%d\t",ptr->element);
ptr=ptr->next;

}
printf("%d\t",rear->element);
}

}

INPUT/OUTPUT:

gpcetadmin@gpcetadmin-Veriton-Series:~$ gcc Igl.c

gpcetadmin@gpcetadmin-Veriton-Series:~$./a.out

l.insert

2.delete
3.display

4.exit

enter u r choicel

enter element to be inserted into queuelO

l.insert

2.delete
3.display

4.exit

enter u r choicel

enter element to be inserted into queue20

l.insert

2.delete
3.display

4.exit

enter u r choicel

enter element to be inserted into queue30

l.insert

2.delete
3.display

4.exit

enter u r choice3

10 20 30

l.insert

2.delete
3.display

4.exit

enter u r choice2

element removed from queue=10

l.insert

2.delete
3.display

4.exit

enter u r choice3

20 30

l.insert
2.delete
3.display

4.exit

enter u r choice

4

3. Write a program to implement circular queue using arrays

PROGRAM:

#include<stdio.h>
#include<stdlib.h>
int q[50],f=-1,r=-1,n;
int main()

{

int i,choice,item,ri;
printf("enter size\n");
scanf("%d",&n);
while(1)

{

printf("\n menu");
printf("\nl.insertion");
printf("\n2.deletion");
printf("\n3.display");
printf("\n4.exit");
printf("\n enter u r choice");

scanf("%d",&choice);

switch(choice)

{

case l:insertion();break;

case 2:deletion();break;

case 3:display();break;

case 4:exit(0);break;
default:printf("invalid choice");break;
}

}

return O;

insertion()

{

int item;

if((f==0 && r==n-1) || (f==r+1))
{

printf("queue is full");

}

else if(f==-1 && r==-1)

{

f=0;

r=0;
printf("enter item\n");
scanf("%d",&item);

}

else if(r==n-1)

{

r=0;

printf("enter item\n");
scanf("%d",&item);

}

else

{

r++;

printf("enter item\n");
scanf("%d",&item);

}

qlr]=item;

}

deletion()
{
int ri;

ri=q[f];

printf("queue is empty");
}

else if(f==r)

{

f=-1;

r=-1;

}

else if(f==n-1)

f=0;

else

f++;
}
printf("deleted data=%d\n",ri);

}

display()

int i;

if(f<=r)

{

for(i=f;i<=r;i++)
printf("%d\t",qlil);

}

else

{
for(i=f;i<=n-1;i++)
printf("%d\t",q[il);

for(i=0;i<=r;i++)

printf("%d\t",qlil);
}
}

INPUT/OUTPUT:

gpcetadmin@gpcetadmin-Veriton-Series:~$ gedit cqa.c
gpcetadmin@gpcetadmin-Veriton-Series:~$ gcc cqa.c
gpcetadmin@gpcetadmin-Veriton-Series:~$./a.out
enter size

3

menu
l.insertion
2.deletion
3.display

4.exit

enter u r choicel
enter item

10

menu

l.insertion
2.deletion
3.display

4.exit

enter u r choicel
enter item

20

menu
l.insertion
2.deletion
3.display

4.exit

enter u r choice3

10 20

menu
l.insertion
2.deletion
3.display

4.exit

enter u r choice2

deleted data=10

menu
l.insertion
2.deletion
3.display

4.exit

enter u r choice3

20

menu
1l.insertion

2.deletion

3.display

4.exit

enter u r choicel
enter item

30

menu
l.insertion
2.deletion
3.display

4.exit

enter u r choice3

20 30

menu
l.insertion
2.deletion
3.display

4.exit

enter u r choicel
enter item

40

menu

l.insertion
2.deletion
3.display

4 .exit

enter u r choice3

20 30 40

menu
l.insertion
2.deletion
3.display

4.exit

enter u r choicel

queue is full

menu
l.insertion

2.deletion

3.display

4.exit

enter u r choice 4

Tables:

Hashtables:

Introduction

Any large information source (data base) can be thought of as a table (with multiple
fields), containing information.

For example:

A telephone book has fields name, address and phone number. When you want to
find somebody’s phone number, you search the book based on the name field.

A user account on AA-Design, has the fields user id, password and home folder. You
logon using your user _id and password and it takes you to your home folder.

To find an entry (field of information) in the table, you only have to use the contents
of one of the fields (say name in the case of the telephone book). You don’t have to
know the contents of all the fields. The field you use to find the contents of the
other fields is called the key.ldeally, the key should uniquely identify the entry, i.e.

if the key is the name then no two entries in the telephone book have the same
name. We can treat the Table formulation as an abstract data type

Hashing

Having an insertion, find and removal of O(log(N)) is good but as the size of the
table

becomes larger, even this value becomes significant. We would like to be able to
use an

algorithm for finding of O(1). This is when hashing comes into play!

Hashing using Arrays

When implementing a hash table using arrays, the nodes are not stored
consecutively,

instead the location of storage is computed using the key and a hash function. The
computation of the array index can be visualized as shown below:

hash darray
Key —P P .
y function index

The value computed by applying the hash function to the key is often referred to as
the

hashed key. The entries into the array, are scattered (not necessarily sequential) as
can be

seen in figure below.

key entry

4| <key= I <data>

10 | <key= I <data>

123 | <key> | <data>

The cost of the insert, find and delete operations is now only O(1). Can you think of
why?

Hash tables are very good if you need to perform a lot of search operations on a
relatively

stable table (i.e. there are a lot fewer insertion and deletion operations than search
operations).

One the other hand, if traversals (covering the entire table), insertions, deletions are
a lot

more frequent than simple search operations, then ordered binary trees (also called
AVL trees) are the preferred implementation choice.

Hashing Performance
There are three factors the influence the performance of hashing:
Hash function

¢ should distribute the keys and entries evenly throughout the entire table

¢ should minimize collisions
Collision resolution strategy
¢ Open Addressing: store the key/entry in a different position
e Separate Chaining: chain several keys/entries in the same position
Table size
e Too large a table, will cause a wastage of memory
¢ Too small a table will cause increased collisions and eventually force rehashing (creating
a new hash table of larger size and copying the contents of the current hash table into it)
e The size should be appropriate to the hash function used and should typically be a prime

number. Why? (We discussed this in class).
[]

Selecting Hash Functions
The hash function converts the key into the table position. It can be carried out
using:

Modular Arithmetic: Compute the index by dividing the key with some value and
use the remainder as the index. This forms the basis of the next two techniques.
For Example: index := keyMOD table_size
Truncation: Ignoring part of the key and using the rest as the array index. The
problem with this approach is that there may not always be an even distribution
throughout the table.
For Example: If student id’s are the key 928324312 then select just the last three
digits as the index i.e. 312 as the index. => the table size has to be atleast
999.Why?
Folding: Partition the key into several pieces and then combine it in some
convenient way.
For Example:
¢ For an 8 bit integer, compute the index as follows:
Index := (Key/10000 + KeyMOD 10000) MOD Table_Size.
e For character strings, compute the index as follows:
Index :=0
For | in 1.. length(string)
Index := Index + ascii_value(String(l))

