Sorting

Unit-4

Sorting Techniques- Sorting by Insertion: Straight Insertion sort- List

insertion sort- Binary insertion sort- Sorting by selection: Straight selection sort-
Heap Sort- Sorting by Exchange- Bubble Sort- Shell Sort-Quick Sort-External Sorts:

Merging Order Files-Merging Unorder Files- Sorting Process.

Sorting in general refers to warious methods of arranging or ordering things based on criterias
(numerical, chronological, alphabetical, hierarchical etc.). There are many approaches to sorting data
and each has its own merits and demerits.

Bubble Sort:

Bubble Sort is probably one of the oldest, easiest, straight-forward, inefficient sorting algorithms. Bubble
sort is a simple sorting algorithm that works by repeatedly stepping through the list to be sorted,
comparing each pair of adjacent items and swapping them if they are in the wrong order. The pass
through the list is repeated until no swaps are needed, which indicates that the list is sorted. The
algorithm gets its name from the way smaller elements "bubble" to the top of the list. Because it only
uses comparisons to operate on elements, it is a comparison sort. Although the algorithm is simple,
most of the other sorting algorithms are more efficient for large lists. Bubble sort is not a stable sort
which means that if two same elements are there in the list, they may not get their same order with
respect to each other.

Bubble Sort Algorithm:

Step l: Repeat Steps 2 and 3 fori=l to 10
Step 2@ Set j=1
Step 3: Repeat while j<=n
(&) if a[i] < al3]]
Then interchange a[i] and a[j]
[End of if]
(B) S=t j = J+1
[End of Inner Loop]

[End of 5tep 1 Outer Loop]
Step 4: Exit

PROGRAM:

#include<stdio.h>
#include<stdlib.h>
int main()

{

int a[100],n,i;
printf("enter size\n");
scanf("%d",&n);
printf("enter values\n");
for(i=0;i<n;i++)

{

scanf("%d",&alil);

}

printf("values before sorting\n");
for(i=0:i<n;i++)

{

printf("%d\t",ali]);

}

bubblesort(a,n);

printf("\n values after sorting\n");
for(i=0;i<n;i++)

{
printf("%d\n",alil);
}

return O;

}

bubblesort(int a[],int n)
{

inti,j,temp;
for(i=0:i<n;i++)

{
for(j=i+1;j<n;j++)
{

if(alil>alj])

{

temp=alil;
alil=aljl;
aljl=temp;

}

}

}

}
INPUT/OUTPUT:

gpcetadmin@gpcetadmin-Veriton-Series:~$ gcc bs.c
gpcetadmin@gpcetadmin-Veriton-Series:~$./a.out
enter size

4

enter values

40

20

30

10

values before sorting

40 20 30 10

values after sorting

10

20

30

40

Time Complexity:
Worst Case Performance O(N?)
Best Case Performance O[N7)
Average Case Performance ON?)
Selection Sort:

The algorithm divides the input list into two parts: the sub-list of items already sorted, which is built up
from left to right at the front (left) of the list, and the sub-list of items remaining to be sorted that
occupy the rest of the list. Initially, the sorted sub-list is empty and the unsorted sub-list is the entire
input list. The algorithm proceeds by finding the smallest (or largest, depending on sorting order)
element in the unsorted sub-list, exchanging it with the leftmost unsorted element {putting it in sorted
order), and moving the sub-list boundaries one element to the right.

Selection sortis asorting algorithm, specifically an in-place comparison sort. 1t has Qjn?) time
complexity, making it ineffident on large lists.

Selection Sort Algorithm and Pseudo Code:
f* a[l] to a[n-1] is the array to sort */

inti,j:

int iMin;

/% adwance the position through the entire array */

/r {(could do j < n-1 because single element is alsc min element) */

for{(j =0; J < n-L1; j++) |
S* find the min element in the unsorted alj .. n-1] */
/* assume the min is the first slement */

iMin = j;
/* test against elemsnts after j to find the smallest */
for (L = j+1: 1 < n; i++) |

f* if this element is less, then it is the new minimum */
if (a[i] < a[iMin]) {

Y found new minimum; remember its index ¥/

iMin = i;

l

J*¥ iMin is the index of the minimum element. 3wap it with the current
position */
if { iMin !'= 3) [
swap(a[i], a[iMin]):

]

PROGRAM:

#include<stdio.h>
#include<stdlib.h>

int main()

{

int a[100],n,i;
printf("enter size\n");
scanf("%d",&n);
printf("enter values\n");
for(i=0;i<n;i++)

{

scanf("%d",&alil);

}

printf("values before sorting\n");
for(i=0;i<n;i++)

{

printf("%d\t",a[il);

}

selectionsort(a,n);
printf("\n values after sorting\n");
for(i=0;i<n;i++)

{

printf("%d\n",alil);

}

return O;

}

selectionsort(int a[],int n)
{

int i,j,temp,min;
for(i=0;i<n;i++)

{

min=i;
for(j=i+1;j<n;j++)
{

if(a[min]>alj])

{

min=j;

}

}

temp=alil;
alil=a[min];
a[min]=temp;

}

}

INPUT/OUTPUT:

gpcetadmin@gpcetadmin-Veriton-Series:~$ gedit ss.c
gpcetadmin@gpcetadmin-Veriton-Series:~$ gcc ss.c
gpcetadmin@gpcetadmin-Veriton-Series:~$./a.out
enter size

4

enter values

40

20

30

10

values before sorting

40 20 30 10
values after sorting
10

20

30

40

Time Complexity:

Selection sort is not difficult to analyze compared to other sorting algorithms since none of the loops
depend on the data in the array. Selecting the lowest element requires scanning all n elements (this
takes n - 1 comparisons) and then swapping it into the first position. Finding the next lowsst element
requires scanning the remaining n—1 elements and so on, for (n-1)+{n-2)+ _+2+1=nin-1) /2
€ 0{n*) comparisons. Each of these scans reguires one swap for n -1 elements [the final element is
already in place).

Worst Case Performance O(N7)
Best Case Performance O[N?)
Average Case Performance o[N*)

Insertion Sort:

An algorithm consider the elements one at a time, inserting each in its suitable place among those
already considered (keeping them sorted). Insertion sort is an example of an incremental algorithm. It
builds the sorted sequence one number at a time. This is a suitable sorting technique in playing card
games. Insertion sort provides several advantages:

* Simple implementation

+ Efficient for (quite) small data sets

+« Adaptive (i.e., efficient) for data sets that are already substantially sorted: the time complexity is
O(n + d), where d is the number of inversions

* More efficient in practice than most other simple quadratic {ie., Qin%)) algorithms such
as selection sort or bubble sort; the best case (nearly sorted input) is Ofn)

+ Stable; i.e., does not change the relative order of elements with equal keys
* [n-place; i.e., only requires a constant amount O(1) of additional memory space
+« Onling; i.e., can sort a list as it receives it

PROGRAM:

#include<stdio.h>

int main()

{

int a[100],n,i;
printf("enter n\n");
scanf("%d",&n);
printf("enter values \n");
for(i=0;i<n;i++)

{

scanf("%d",&alil);

}

printf("before sorting\n");
for(i=0;i<n;i++)

{

printf("%d\t",alil]);

}

is(a,n);

printf("after sorting\n");
for(i=0;i<n;i++)

{

printf("%d\t",a[il);

}

return O;

}

is(int a[],int n)

{

int i,j,index;
for(i=1:i<n;i++)
{

index=alil;

j=i;

while((j>0) && a[j-11>index)
{

aljl=alj-11;
j=j-1;

}

aljl=index;

}

}

INPUT/OUTPUT:

gpcet@gpcet-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$ gcc ins.c
gpcet@gpcet-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$./a.out
enter n
5
enter values
50
30
20
10
40
before sorting
50 30 20 10 40
after sorting
10 20 30 40 50
Time Complexity:

Worst Case Performance 0N}
Best Case Performance(nearly) O(N)
Average Case Performance O[N)

Cuick Sort:
CQuwick sort, or partition-exchange sort, is a sorting algorithm developed by Tony Hoare that, on average,
makes O(n log n) comparisons to sort n items. In the worst case, it makes O{n*) comparisons, though this

behavior is rare. Quick sort is often faster in practice than other O(n log n) algorithms. It works by first of
all by partitioning the array around a pivot value and then dealing with the 2 smaller partitions
separately. Partitioning is the most complex part of quick sort. The simplest thing is to use the first value
inthe array, a[l] (or a[0] as | = 0 to begin with) as the pivot. After the partitioning, all values to the left of
the pivot are <= pivot and all values to the right are » pivot. The same procedure for the two remaining
sub lists is repeated and so on recursively until we have the entire list sorted.
Advantages:
* One of the fastest algorithms on average.
+ Does not need additional memary (the sorting takes place in the array - this is called in-place
processing).
Disadvantages: The worst-case complexity is O[N7)
Quick Sort Procedure:
Quick sort is a divide and conquer algorithm. Quick sort first divides a large list into two smaller sub-lists:
the low elements and the high elements. Quick sort can then recursively sort the sub-lists.
The steps are:
1. Pickan element, called a pivot, from the list.
2. Reorder the list so that all elements with values less than the pivot come before the pivot, while
all elements with values greater than the pivot come after it {equal values can go either way).
After this partitioning, the pivot is in its final position. This is called the partition operation.
3. Recursively apply the above steps to the sub-list of 2lements with smaller values and separately
the sub-list of elements with greater values.
The base case of the recursion is lists of size zero or one, which never need to be sorted.

PROGRAM: (Recursive)

#include<stdio.h>
int main()

{

int a[50],n,i;
printf("enter size\n");
scanf("%d",&n);
printf("enter values\n");
for(i=0;i<n;i++)

{

scanf("%d",&alil);

}

printf("values before sorting\n");
for(i=0;i<n;i++)

{

printf("%d\t",alil]);

}

gs(a,n);

printf("values after sorting\n");
for(i=0;i<n;i++)

{

printf("%d\t",a[il);

}

return O;

}

gs(int a[],int n)
{

sort(a,0,n-1);

}

sort(int a[],int left,int right)
{

int pivot,l,r;

pivot=alleft];

|=left;

r=right;

while(left<right)

{

while((a[right]>=pivot) && (left<right))
right--;

if(left!=right)

{

alleft]=alright];

left++;

}

while((a[left]<=pivot) && (left<right))

left++;
if(left!=right)

{

a[right]=a[left];
right--;

}

}

a[left]=pivot;
pivot=left;

left=l;

right=r;
if(left<pivot)
sort(a,left,pivot-1);
if(right>pivot)
sort(a,pivot+1,right);
}

INPUT/OUTPUT:

gpcetadmin@gpcetadmin-MS-7528:~$ gcc gsr.c
gpcetadmin@gpcetadmin-MS-7528:~$./a.out

enter size

5

enter values

30

50

20

40

10

values before sorting
30 50 20 40
values after sorting
10 20 30 40

10

50

PROGRAM:(Non-Recursive)

#include <stdio.h>

// A utility function to swap two elements

void swap (int* a, int* b))

{

int t = *a;

b =1t

/* This function is same in both iterative and recursive*/
int partition (int arr[], int I, int h)

{
int x = arr[h];
inti=(l-1);
int j;

for(j=1;j<=h-1;j++)

{
if (arr[jl <= x)
{
i++;
swap (&arrlil, &arrljl);
}
}

swap (&arr[i + 1], &arr[h]);
return (i + 1);
}
/* A[]1 --> Array to be sorted, | --> Starting index, h --> Ending index */
void quickSortlterative (int arr[], int |, int h)
{

/| Create an auxiliary stack

intstacklh-1+11;

// initialize top of stack
int top = -1;
// push initial values of | and h to stack
stack[++top 1 = |;

stack[++top] = h;

/| Keep popping from stack while is not empty

while (top >=0)
{

// Pop h and |

h = stack[top--];
| = stack[top-- I;

// Set pivot element at its correct position in sorted array
int p = partition(arr, |, h);

/] If there are elements on left side of pivot, then push left

/] side to stack

if(p-1>1)

{

stack[++top] = |;

stack[++top] =p-1;

}

// If there are elements on right side of pivot, then push right
/] side to stack

if(p+l<h)
{
stack[++top 1 =p + 1;
stack[++top] = h;
}
}

void printArr(int arr[], int n)

{
int i;
for(i=0;i<n; ++i)
printf("%d ", arr[i]);
int main()
{

int arr[] = {4, 3,5, 2,1, 3, 2, 3};
int n = sizeof(arr) / sizeof(*arr);
quickSortlterative(arr, 0, n-1);
printArr(arr, n);

return O;

INPUT/OUTPUT:
gpcetadmin@gpcetadmin-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$ gcc
nrqgs.c
gpcetadmin@gpcetadmin-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$
.Ja.out

12233345

PROGRAM :(Randomized Element as pivot)

#include<stdlib.h>
#include<stdio.h>
#include <time.h>

int partition(int *a,int p,int r)
{

srand(time(0));

int pivot = rand()%(r-p);
pivot += p;
swap(&alr],&alpivot]);
pivot =r;

int temp = alr];

inti = p-1;

int j;
for(j=p;j<r;j++)

{

if (a[j]l < temp)

{

i++;

swap (&alil,&aljl);

}

}

i++;

swap (&alr],&alil);
return i;

}

swap(int *r,int *pivot)

{

int temp;
temp==*r;
*r=*pivot;
*pivot=temp;

}

void quicksort(int *a,int p,int r)
{

if(p<r)

{

int g = partition(a,p,r);
quicksort(a,p,q);
quicksort(a,q+1,r);

}

}

int main() {
/] your code goes here

inti:

int a[] ={2,5,6,2,1,9,8};
quicksort (a,0,6);

for (i=0;i<7;i++)
printf("%d\t",a[il);
return O;

}

INPUT/OUTPUT:

gpcetadmin@gpcetadmin-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$
gedit sariyu.c
gpcetadmin@gpcetadmin-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$ gcc
sariyu.c
gpcetadmin@gpcetadmin-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$
Ja.out

1 2 2 5 6 8 9

Merge Sort:

Merge sort is based on Divide and conquer method. It takes the list to be sorted and
divide it in half to create two unsorted lists. The two unsorted lists are then sorted
and merged to get a sorted list. The
two unsorted lists are sorted by continually calling the merge-sort algorithm;
we eventually get a list of size 1 which is already sorted. The two lists of size
1 are then merged.

Merge Sort Procedure:

This is a divide and conquer algorithm.

This works as follows :

1. Divide the input which we have to sort into two parts in the middle. Call it the left
part and right part.

Example: Say the input is -10 32 45 -78 91 1 0 -16 then the left part will be -10 32
45 -78 and the right part will be 91 1 0 6.

2. Sort each of them separately. Note that here sort does not mean to sort it using
some other method. We use the same function recursively.

3. Then merge the two sorted parts.

Input the total number of elements that are there in an array (number_of elements).
Input the array (array[number_of elements]). Then call the function MergeSort() to
sort the input array. MergeSort() function sorts the array in the range [left,right] i.e.
from index left to index right inclusive. Merge() function merges the two sorted
parts. Sorted parts will be from [left, mid] and [mid+1, right]. After merging output
the sorted array.

MergeSort() function:

It takes the array, left-most and right-most index of the array to be sorted as
arguments. Middle index (mid) of the array is calculated as (left + right)/2. Check if
(left<right) cause we have to sort only when left<right because when left=right it is
anyhow sorted. Sort the left part by calling MergeSort() function again over the left
part MergeSort(array,left,mid) and the right part by recursive call of MergeSort
function as MergeSort(array,mid + 1, right). Lastly merge the two arrays using the
Merge function.

Merge() function:

It takes the array, left-most , middle and right-most index of the array to be merged
as arguments.

Finally copy back the sorted array to the original array.

38|27 |43 |39 |82 |10
38127 |43 | 3 918210
38 | 27 43 | 3 91|82 10
VAN / \
38 27 43 3 9 82 10
27 | 38 3143 9|82 10
3|27 |38 |43 910 |82
319110 (27 |38 |43 |82
main()
{
int a[100],n,i;

printf("enter n\n");
scanf("%d",&n);

printf("enter values\n");

for(i=0;i<n;i++)

{

scanf("%d",&alil);

}

printf("values before sorting\n");
for(i=0;i<n;i++)

{

printf("%d\t",alil);

}

mergesort(a,0,n-1);
printf("values after sorting\n");
for(i=0;i<n;i++)

{

printf("%d\n",alil);

}

}

int mergesort(int a[],int low,int high)
{

int mid;

if(low<high)

{

mid=(low+high)/2;
mergesort(a,low,mid);
mergesort(a,mid+1,high);
merge(a,low,mid,high);

}

}

int merge(int a[1,int l,int m,int h)
{

inti,j,k,b[50];

i=l;

j=m+1;

k=l;

while(i<=m && j<=h)
{

if(alil<=alj])
b[k++]1=ali++];
else
blk++]=alj++];

}

while(i<=m)
b[k++]1=ali++];
while(j<=h)
blk++]=alj++];
for(k=I;k<=h;k++)
{

alk]=Dbl[k];

}

return O;

}

INPUT/OUTPUT:

gpcetadmin@gpcetadmin-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$ gcc
mer.c
gpcetadmin@gpcetadmin-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$
.Ja.out

enter n

3

enter values

30

0

-1

values before sorting

30 0 -1

values after sorting

-1

0

30
Heap Sort:

The heap sort algorithm can be divided into two parts. In the first step, a heap is
built out of the data. In the second step, a sorted array is created by repeatedly
removing the largest element from the heap, and inserting it into the array. The
heap is reconstructed after each removal. Once all objects have been removed from
the heap, we have a sorted array. The direction of the sorted elements can be
varied by choosing a min-heap or max-heap in step one. Heap sort can be
performed in place. The array can be split into two parts, the sorted array and the
heap.

The (Binary) heap data structure is an array object that can be viewed as a nearly complete binary tree.

T l'/a-"_"-\.\l
19 11!16 7 15 | 10 I\E/i

o

4 I
o AW

Heap Sort Algorithm:
Step 1. Build Heap — O{n)-Build binary tree taking N items as input, ensuring the heap structure property
is held, in other words, build a complete binary tree. Heapify the binary tree making sure the binary tree
satisfies the Heap Order property.
Step 2. Perform n deleteMax operations — O(log(n) }- Delete the maximum element in the heap — which
is the root node, and place this element at the end of the sorted array.

#include<stdio.h>

int p(int);

int left(int);

int right(int);

void heapify(int[],int,int);
void buildheap(int[],int);

void heapsort(int[],int);

void main()

{

int x[20],n,i;

printf("enter the no. of elements to b sorted");
scanf("%d",&n);

printf("enter the elements ");
for(i=0;i<n;i++)
scanf("%d",&x[i]);

printf("values before sorting\n");
for(i=0;i<n;i++)

printf("%d\t ",x[i]);
heapsort(x,n);

printf("sorted array is\n");
for(i=0:i<n:i++)

printf("%d\t ",x[i]);

}

int p(int i)
{

return i/2;

}

int left(int i)
{

return 2*i+1;

}

int right(int i)

{

return 2*i+2;

}

void heapify(int a[],int i,int n)
{

int I,r,large,t;

I=left(i);

r=right(i);
if((l<=n-1)&&(a[l]>alil))
large=l,

else large=i;
if((r<=n-1)&&(alr]>a[large]))
large=r;

if(large!=i)

{

t=alil;

ali]=allargel];
allarge]=t;
heapify(a,large,n);

}

}

void buildheap(int a[],int n)
{

int i;
for(i=(n-1)/2;i>=0;i--)
heapify(a,i,n);

}

void heapsort(int a[],int n)
{

inti,m,t;

buildheap(a,n);

m=n ;

for(i=n-1;i>=1;i--)

{

t=a[0];

a[0]=alil;

alil=t;

m=m-1;
heapify(a,0,m);
}

}

INPUT/OUPUT:
gpcetadmin@gpcetadmin-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$ gcc
hs.c
gpcetadmin@gpcetadmin-HCL-Infosystems-Limited-BIOS-For-GA-G31M-S2L:~$
.Ja.out

enter the no. of elements to b sorted5
enter the elements 50

30

20

10

40

values before sorting

50 30 20 10 40

sorted array is

10 20 30 40 50

Time Complexity:

Worst Case Performance 0[N log, N)
Best Case Performance(nearly) 0[N logz N)
Average Case Performance 0[N log; N)

Radix/Bucket Sort:
Bucket sort, or bin sort, is a sorting algorithm that works by partitioning an array into a number of
buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by
recursively applying the bucket sorting algorithm. It is a distribution sort, and is a cousin of radix sort in
the most to least significant digit flavor.
Bucket sort works as follows:

1. Setupan array of initially empty "buckets”™.

2. Scatter: Go over the original array, putting each object in its bucket.

3. Sorteach non-empty bucket.

4 Gather: Visit the buckets in order and put all elements back into the original array.
Radix/Bucket Procedure:

1. Reading the list of elements. Calling the Radix sort function.

2. Checking the biggest number (big) in the list and number of digits in the biggest number (nd).

3. Inserting the numbers in to the buckets based on the one’s digits and collecting the numbers
and again inserting in to buckets based on the ten’s digits and soon...

4. Inserting and collecting is continued ‘nd’ times. The elements get sorted.

5. Displaying the elements in the list after sorting.

Source code:
#include<conio.h=
#include<stdio.h>
void radix_sort{int a[20],int n)
{

int bucket[10][10], ctr[10]={0};

int big,nd.ij k| div=1b_no;

big=a[0];
i=1;
while{i<n)
{
if(a[i]=big)

big=alil;

i+
} [*checking the biggest number*/
nd=0;
while{big=0)

{

nd=nd+1;

big=big/10;

} /*checking number of digits in the biggest number*/
for(i=0;i<n;i++)

{

for(j=0;j<n;j++)

{

b_no=((aljl/div)%10);
bucket[b_no][ctr[b_noll=alj];
ctrlb_nol=ctr[b_no]+1;

} /*Inserting the numbers in to the buckets*/
div=div*10;

j=0;

for(k=0;k<10;k++)

{

for(I=0;l<ctr[k];|++)

{

aljl=bucket[KI[I];

j++;

}

ctr[k]=0;

} /*collecting the elements from the buckets*/
}

}

void main()

{

int i,n,a[20];

printf("\nEnter n:");

scanf("%d",&n);

printf("\nEnter the elements:");
for(i=0:i<n;i++)

scanf("%d",&alil);
printf("\nElements before sorting:\n");
for(i=0:i<n;i++)

printf("%5d",alil]);

radix_sort(a,n);

printf("\nElements after sorting:\n");
for(i=0;i<n;i++)
printf("%5d",alil);

getch();

}
Output:

Enter n:5

Enter the elements:013 323 526 314
33

Elements before sorting:

13 323 526 314 33

Elements after sorting:

13 33 314 323 526

Step-by-step example:

Original, unsorted list:
170, 45, 75, 90, 802, 24, 2, 66

Sorting by least significant digit (1s place) gives:
170, 90, 802, 2, 24, 45, 75, 66
Sorting by next digit {10s place) gives:
802, 2, 24,45, 66,170, 75,30

Sorting by most significant digit {100s place) gives:

2,24 45, 66, 75, 90, 170, 802
It is important to realize that each of the above steps requires just a single pass over the data,
since each item can be placed in its correct bucket without having to be compared with other
items.
Some L3D radix sort implementations allocate space for buckets by first counting the number of
keys that belong in 2ach bucket before moving keys into those buckets. The number of times
that each digit oocurs is stored in an array. Consider the previous list of keys viewed in a
different way:

170, 045, 075,020, 002, 024, 802, 066

The first counting pass starts on the least significant digit of each key, producing an array of
bucket sizes:

2 [bucket size for digits of 0: 170, 090)

2 (bucket size for digits of 2: 002, 502)

1 (bucket size for digits of 4: 024)

2 (bucket size for digits of 5: 045, 075)

1 (bucket size for digits of 6: 066)

A second counting pass on the next mare significant digit of each key will produce an array of
bucket sizes:

2 (bucket size for digits of 0: 002, 202)

1 (bucket size for digits of 2: 024)

1 (bucket size for digits of 4: 045)

1 {bucket size for digits of &: 066)

2 (bucket size for digits of 7: 170, 075)

1 (bucket size for digits of 2: 090)

A third and final counting pass on the most significant digit of each key will produce an array of
bucket sizes:

& (bucket size for digits of 0: 002, 024, 045, 066, 075, 020)

1 (bucket size for digits of 1: 170)

1 (bucket size for digits of 8: 802)

Time Complexity:
Waorst Case Performance 0[N log;, N)
Best Case Performance(nearly) 0[N log; N)
Average Case Performance O{M log; N)
Shellsort

0 Improves on insertion sort.

[Starts by comparing elements far apart, then elements less far apart, and finally comparing adjacent
elements (effectively an insertion sort). By this stage the elements are sufficiently sorted that the
running time of the final stage is much closer to O(N) than O(N2).

Shellsort, is also known as the diminishing increment sort,
Shellsort is one of the oldest sorting algorithms, named
after its inventor Donald. L. Shell (1959). It is fast,

easy to understand and easy to implement. However, its
complexity analysis is sophisticated. The idea of

Shellsort is the following:

a) arrange the data sequence in a two-dimensional array

b) sort the columns of the array

The effect is that the data sequence is partially sorted. The process above is repeated, but each
time with a narrower array, i.e. with a smaller number of columns. In the last step, the array
consists of only one column.

In each step, the sortedness of the sequence is increased, until in the last step it is completely

sorted. However, the number of sorting operations necessary in each step is limited, due to the

presortedness of the sequence obtained in the preceding steps.

Example: Let3 7905168420615
7 3 4 9 8 2 be the data sequence to be
sorted. First, it is arranged in an array with 7
columns (left), then the columns are sorted

(right):
3790516 0 3320515
8420615 7440616
734982 87 9982

Data elements 8 and 9 have now already come to the end of the
sequence, but a small element (2) is also still there. In the next step, the
sequence is arranged in 3 columns, which are again sorted:

0

O~NRPr OO W
NOOONUW
O©CoooPrEN
oO~NOaOP~,WERO
O~NOOOTWNO
oo h~NERE

Now the sequence is almost completely sorted. When arranging it in one
column in the last step, it is only a 6, an 8 and a 9 that have to be moved
a little bit to their correct positions

Implementation Actually, the data sequence is not arranged in a two-dimensional array, but held in a
one-dimensional array that is indexed appropriately.

The algorithm uses an increment sequence to determine how far apart elements to be sorted are:

hi, h2, ..., hewith hi=1

At first elements at distance htare sorted, then elements at distance ht-1, etc, until finally the array is
sorted using insertion sort (distance h1=1).

An array is said to be hk-sorted if all elements spaced a distance hk apart are sorted relative to each
other.
Shellsort only works because an array that is hk-sorted remains hk-sorted when hk- 1-sorted. This

means that subsequent sorts with a smaller increment do not undo the work done by previous phases

The correctness of the algorithm follows from the fact that in the last step (with h = 1) an ordinary
Insertion Sort is performed on the whole array. But since data are presorted by the preceding steps (h
=3, 7,21, ..)only few Insertion Sort steps are required.

int j, p, gap;

comparable tmp;

for (gap = N/2; gap > 0; gap = gap/2)

for (p = gap; p < N ; p++)

{

tmp = a[p];

for (j = p; j >= gap && tmp < a[j- gap]; j = J - gap)
a[j] = a[j-gap];

afj] = tmp;

What should the increment sequence be?

There are many choices for the increment sequence. Any sequence that begins at 1 and always
increases will do, although some yield better performance than others:

1. Shell's original sequence: N/2, N/4 , ..., 1 (repeatedly divide by 2);

2. Hibbard's increments: 1, 3, 7, ..., 2k- 1 ;

3. Knuth's increments: 1, 4, 13, ..., 3k- 1)/ 2;

4. Sedgewick's increments: 1, 5, 19, 41, 109, Each term is of the form either 9 -4k-9 -2k + 1 or 4k -
3-2k+ 1.

Analysis

A Shellsort's worst-case performance using Hibbard's increments is ®(nz2).

The average performance is thought to be about O(ns/4)

The exact complexity of this algorithm is still being debated .

Experience shows that for mid-sized data (tens of thousands elements) the algorithm performs nearly

as well if not better than the faster (n log n) sorts.

