
G. PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY

Accredited by NAAC with ‘A’ Grade of UGC, Approved by AICTE, New Delhi

Permanently Affiliated to JNTUA, Ananthapuramu

(Recognized by UGC under 2(f) and 12(B) & ISO 9001:2008 Certified Institution)

Nandikotkur Road, Venkayapalli, Kurnool – 518452

Department of Computer Science and Engineering

 Bridge Course
 On

Software Architecture & Design Patterns

 By

 M.Sri Lakshmi

2

Table of Contents

Sno Topic Page number

1

Static Modeling using Unified Modeling
Language

 classes

 Class Names

 Class Operations

 Depicting Classes

 Class Responsibilities

 Relationships

 Dependency Relationships

 Generalization Relationships

 Association Relationships

3

2

Interfaces

 Interface Services

 Interface Realization Relationship

 Parameterized Class

 Enumeration

8

3 Exceptions 10

4 Packages 10

5 Component Diagram 11

6 Deployment Diagram 12

7
 Use Case

13

8
State Machine

14

9
Sequence Diagram

15

10
Collaboration Diagram

17

11
Activity Diagram

18

3

Software Design

Static Modeling using Unified Modeling Language (UML) :

Classes:

A class is a description of a set of objects that share the same attributes, operations,

relationships, and semantics. Graphically, a class is rendered as a rectangle, usually including

its name, attributes, and operations in separate, designated compartments.

Class Names:

The name of the class is the only required tag in the graphical representation of a class. It

always appears in the top-most compartment.

An attribute is a named property of a class that describes the object being modeled. In the

class diagram, attributes appear in the second compartment just below the name-

compartment.

Attributes are usually listed in the form:

 attributeName : Type

A derived attribute is one that can be computed from other attributes, but doesn’t actually

exist. For example, a Person’s age can be computed from his birth date. A derived attribute

is

designated by a preceding ‘/’ as in: / age : Date

Attributes can be:

 + public

4

 # protected

 - private

 / derived

Class Operations: Operations describe the class behavior and appear in the third

compartment.

newEntry (n : Name, a : Address, p : PhoneNumber, d : Description)

getPhone (n : Name, a : Address) : PhoneNumber

You can specify an operation by stating its signature: listing the name, type, and default

value of all parameters, and, in the case of functions, a return type.

Depicting Classes:

When drawing a class, you needn’t show attributes and operation in every diagram.

Class Responsibilities:

A class may also include its responsibilities in a class diagram.

A responsibility is a contract or obligation of a class to perform a particular service.

5

Relationships:

In UML, object interconnections (logical or physical), are modeled as relationships.

There are three kinds of relationships in UML:

• dependencies

• generalizations

 Associations

Dependency Relationships: A dependency indicates a semantic relationship between two or

more elements. The dependency from Course Schedule to Course exists because Course is

used in both the add and remove operations of Course Schedule.

Generalization Relationships:

A generalization connects a subclass to its super class. It denotes an inheritance of attributes

and behavior from the superclass to the subclass and indicates a specialization in the

subclass of the more general superclass. UML permits a class to inherit from multiple

superclasses, although some programming languages (e.g., Java) do not permit multiple

inheritance.

6

Association Relationships:

If two classes in a model need to communicate with each other, there must be link

between them.

An association denotes that link.

We can indicate the multiplicity of an association by adding multiplicity adornments to the

line denoting the association.

The example indicates that a Student has one or more Instructors:

The example indicates that every Instructor has one or more Students:

We can also indicate the behavior of an object in an association (i.e., the role of an object)

using role names.

We can also name the association.

We can specify dual associations.

We can constrain the association relationship by defining the navigability of the

association. Here, a Router object requests services from a DNS object by sending

7

messages to (invoking the operations of) the server. The direction of the association

indicates that the server has no knowledge of the Router.

Associations can also be objects themselves, called link classes or an association classes.

A class can have a self association.

We can model objects that contain other objects by way of special associations called

aggregations and compositions.

An aggregation specifies a whole-part relationship between an aggregate (a whole) and a

constituent part, where the part can exist independently from the aggregate. Aggregations

are denoted by a hollow-diamond adornment on the association.

A composition indicates a strong ownership and coincident lifetime of parts by the whole

(i.e., they live and die as a whole). Compositions are denoted by a filled-diamond adornment

on the association.

8

Interfaces :

An interface is a named set of operations that specifies the behavior of objects without

showing their inner structure. It can be rendered in the model by a one- or two-

compartment rectangle, with the stereotype <<interface>> above the interface name.

Interface Services:

Interfaces do not get instantiated. They have no attributes or state. Rather, they specify the

services offered by a related class.

Interface Realization Relationship:

A realization relationship connects a class with an interface that supplies its behavioral

specification. It is rendered by a dashed line with a hollow triangle towards the specifier.

9

Parameterized Class:

A parameterized class or template defines a family of potential elements. To use it, the

parameter must be bound.

A template is rendered by a small dashed rectangle superimposed on the upper-right corner

of the class rectangle. The dashed rectangle contains a list of formal parameters for the

class.

Binding is done with the <<bind>> stereotype and a parameter to supply to the template.

These are adornments to the dashed arrow denoting the realization relationship.

Here we create a linked-list of names for the Dean’s List.

Enumeration :

An enumeration is a user-defined data type that consists of a name and an ordered list of

enumeration literals.

10

Exceptions :

Packages: A package is a container-like element for organizing other elements into

groups.

A package can contain classes and other packages and diagrams.

Packages can be used to provide controlled access between classes in different packages.

Classes in the FrontEnd package and classes in the BackEnd package cannot access each

other in this diagram.

We can model generalizations and dependencies between packages.

11

Component Diagram:

Component diagrams are one of the two kinds of diagrams found in modeling the physical

aspects of an object-oriented system. They show the organization and dependencies

between a set of components.

Use component diagrams to model the static implementation view of a system. This

involves modeling the physical things that reside on a node, such as executables, libraries,

tables, files, and documents.

Component Diagram: Here’s an example of a component model of an executable release.

Component Diagram :

12

Deployment Diagram :

Deployment diagrams are one of the two kinds of diagrams found in modeling the physical

aspects of an object-oriented system. They show the configuration of run-time processing

nodes and the components that live on them.

Use deployment diagrams to model the static deployment view of a system. This involves

modeling the topology of the hardware on which the system executes.

A component is a physical unit of implementation with well-defined interfaces that is

intended to be used as a replaceable part of a system. Well designed components do not

depend directly on other components, but rather on interfaces that components support.

13

Use Case :

“A use case specifies the behavior of a system or a part of a system, and is a description of a

set of sequences of actions, including variants, that a system performs to yield an

observable result of value to an actor.”

 “An actor is an idealization of an external person, process, or thing interacting with a

system, subsystem, or class. An actor characterizes the interactions that outside users may

have with the system.”

Actors can participate in a generalization relation with other actors.

Here we have a Student interacting with the Registrar and the Billing System via a “Register

for Courses” use case.

14

State Machine :

“The state machine view describes the dynamic behavior of objects over time by modeling

the lifecycles of objects of each class. Each object is treated as an isolated entity that

communicates with the rest of the world by detecting events and responding to them.

Events represent the kinds of changes that objects can detect... Anything that can affect an

object can be characterized as an event.”

An object must be in some specific state at any given time during its lifecycle. An object

transitions from one state to another as the result of some event that affects it. You may

create a state diagram for any class, collaboration, operation, or use case in a UML model .

There can be only one start state in a state diagram, but there may be many intermediate

and final states.

15

 Sequence Diagram :

A sequence diagram is an interaction diagram that emphasizes the time ordering of

messages. It shows a set of objects and the messages sent and received by those objects.

Graphically, a sequence diagram is a table that shows objects arranged along the X axis and

messages, ordered in increasing time, along the Y axis.

An object in a sequence diagram is rendered as a box with a dashed line descending from it.

The line is called the object lifeline, and it represents the existence of an object over a

period of time.

16

Messages are rendered as horizontal arrows being passed from object to object as time

advances down the object lifelines. Conditions (such as [check = “true”]) indicate when a

message gets passed.

Notice that the bottom arrow is different. The arrow head is not solid, and there is no

accompanying message. This arrow indicates a return from a previous message, not a new

message.

An iteration marker, such as * (as shown), or *[i = 1..n] , indicates that a message will be

repeated as indicated.

17

Collaboration Diagram :

A collaboration diagram emphasizes the relationship of the objects that participate in an

interaction. Unlike a sequence diagram, you don’t have to show the lifeline of an object

explicitly in a collaboration diagram. The sequence of events are indicated by sequence

numbers preceding messages.

Object identifiers are of the form objectName : className, and either the objectName or

the className can be omitted, and the placement of the colon indicates either an

objectName: , or a :className.

18

Collaboration Diagram Sequence Diagram :

Both a collaboration diagram and a sequence diagram derive from the same information in

the UML’s metamodel, so you can take a diagram in one form and convert it into the other.

They are semantically equivalent.

Activity Diagram :

An activity diagram is essentially a flowchart, showing the flow of control from activity to

activity.

Use activity diagrams to specify, construct, and document the dynamics of a society of

objects, or to model the flow of control of an operation. Whereas interaction diagrams

emphasize the flow of control from object to object, activity diagrams emphasize the flow of

control from activity to activity. An activity is an ongoing non-atomic execution within a

state machine.

19

	G. PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY
	Accredited by NAAC with ‘A’ Grade of UGC, Approved by AICTE, New Delhi
	Permanently Affiliated to JNTUA, Ananthapuramu
	(Recognized by UGC under 2(f) and 12(B) & ISO 9001:2008 Certified Institution)
	Nandikotkur Road, Venkayapalli, Kurnool – 518452
	Department of Computer Science and Engineering

