Unit-III: Algebraic Structures

Algebraic Structures:

Algebraic Systems: Examples and General Properties, Semi groups and Monoids, Polish expressions and their compilation, Groups: Definitions and Examples, Subgroups and Homomorphism's, Group Codes.

Lattices and Boolean algebra:

Lattices and Partially Ordered sets, Boolean algebra.

3.1 Algebraic systems

N = {1,2,3,4,..... } = Set of all natural numbers.

 $Z = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \dots\} = Set of all integers.$

Q = Set of all rational numbers.

R = Set of all real numbers.

Binary Operation: The binary operator * is said to be a binary operation (closed operation) on a non- empty set A, if

 $a * b \in A$ for all $a, b \in A$ (Closure property).

Ex: The set N is closed with respect to addition and multiplication

but not w.r.t subtraction and division.

<u>3.1.1 Algebraic System</u>: A set A with one or more binary(closed) operations defined on it is called an algebraic system.

Ex: (N, +), (Z, +, -), (R, +, ., -) are algebraic systems.

3.1.2 Properties

Associativity: Let * be a binary operation on a set A.

The operation * is said to be associative in A if

(a * b) * c = a *(b * c) for all a, b, c in A

Identity: For an algebraic system (A, *), an element 'e' in A is said to be an identity element of A if a * e = e * a = a for all $a \in A$.

Note: For an algebraic system (A, *), the identity element, if exists, is unique.

Inverse: Let (A, *) be an algebraic system with identity 'e'. Let a be an element in A. An element b is said to be inverse of A if

a * b = b * a = e

3.1.3 Semi groups

Semi Group: An algebraic system (A, *) is said to be a semi group if

- 1. * is closed operation on A.
- 2. * is an associative operation, for all a, b, c in A.
- Ex. (N, +) is a semi group.
- Ex. (N, .) is a semi group.
 - Ex. (N, -) is not a semi group.

3.1.4 Monoid

An algebraic system (A, *) is said to be a **monoid** if the following conditions are satisfied.

- 1) * is a closed operation in A.
- 2) * is an associative operation in A.
- 3) There is an identity in A.

Ex. Show that the set 'N' is a monoid with respect to multiplication.

<u>Solution</u>: Here, N = {1,2,3,4,.....}

1. <u>Closure property</u>: We know that product of two natural numbers is again a natural number.

i.e., a.b = b.a for all $a,b \in N$

- : Multiplication is a closed operation.
- 2. Associativity : Multiplication of natural numbers is associative.

i.e., (a.b).c = a.(b.c) for all $a,b,c \in N$

3. <u>Identity</u>: We have, $1 \in N$ such that

a.1 = 1.a = a for all $a \in N$.

: Identity element exists, and 1 is the identity element.

Hence, N is a monoid with respect to multiplication.

Examples

Ex. Let (Z, *) be an algebraic structure, where Z is the set of integers

and the operation * is defined by n * m = maximum of (n, m).

Show that (Z, *) is a semi group.

Is (Z, *) a monoid ?. Justify your answer.

Solution: Let a , b and c are any three integers.

<u>Closure property</u>: Now, a * b = maximum of (a, b) $\in Z$ for all a, b $\in Z$

<u>Associativity</u>: $(a * b) * c = maximum of {a,b,c} = a * (b * c)$

 \therefore (Z, *) is a semi group.

Identity : There is no integer x such that

a * x = maximum of (a, x) = a for all $a \in Z$

 \therefore Identity element does not exist. Hence, (Z, *) is not a monoid.

Ex. Show that the set of all strings 'S' is a monoid under the operation 'concatenation of strings'.

Is S a group w.r.t the above operation? Justify your answer.

Solution: Let us denote the operation

'concatenation of strings' by +.

Let s_1 , s_2 , s_3 are three arbitrary strings in S.

<u>Closure property</u>: Concatenation of two strings is again a string.

i.e., $s_1+s_2 \in S$

Associativity: Concatenation of strings is associative.

 $(s_1 + s_2) + s_3 = s_1 + (s_2 + s_3)$

Identity: We have null string , $I \in S$ such that $s_1 + I = S$.

 \therefore S is a monoid.

Note: S is not a group, because the inverse of a non empty string does not exist under concatenation of strings.

3.2 Groups

Group: An algebraic system (G, *) is said to be a **group** if the following conditions are satisfied.

- 1) * is a closed operation.
- 2) * is an associative operation.
- 3) There is an identity in G.
- 4) Every element in G has inverse in G.

Abelian group (Commutative group): A group (G, *) is

said to be abelian (or commutative) if

$$a * b = b * a$$
 "a, $b \in G$.

Properties

In a Group (G, *) the following properties hold good

- 1. Identity element is unique.
- 2. Inverse of an element is unique.
- 3. Cancellation laws hold good

a * b = a * c => b = c (left cancellation law) a * c = b * c => a = b (Right cancellation law) 4. $(a * b)^{-1} = b^{-1} * a^{-1}$

In a group, the identity element is its own inverse.

Order of a group : The number of elements in a group is called order of the group.

Finite group: If the order of a group G is finite, then G is called a finite group.

Ex1. Show that, the set of all integers is an abelian group with respect to addition.

Solution: Let Z = set of all integers.

Let a, b, c are any three elements of Z.

1. <u>Closure property</u> : We know that, Sum of two integers is again an integer.

i.e., $a + b \in Z$ for all $a, b \in Z$

2. <u>Associativity</u>: We know that addition of integers is associative.

i.e., (a+b)+c = a+(b+c) for all $a,b,c \in Z$.

3. <u>Identity</u>: We have $0 \in Z$ and a + 0 = a for all $a \in Z$.

: Identity element exists, and '0' is the identity element.

4. <u>Inverse</u>: To each $a \in Z$, we have $-a \in Z$ such that

a + (-a) = 0

Each element in Z has an inverse.

5. <u>Commutativity</u>: We know that addition of integers is commutative.

i.e., a + b = b + a for all $a, b \in Z$.

Hence, (Z, +) is an abelian group.

Ex2. Show that set of all non zero real numbers is a group with respect to multiplication.

Solution: Let R^* = set of all non zero real numbers.

Let a, b, c are any three elements of R^* .

1. <u>Closure property</u> : We know that, product of two nonzero real numbers is again a nonzero real number .

i.e., $a \cdot b \in R^*$ for all $a, b \in R^*$.

2. Associativity: We know that multiplication of real numbers is

associative.

i.e., (a.b).c = a.(b.c) for all a, b, $c \in \mathbb{R}^*$.

3. <u>Identity</u>: We have $1 \in R^*$ and $a \cdot 1 = a$ for all $a \in R^*$.

: Identity element exists, and '1' is the identity element.

4. <u>Inverse</u>: To each $a \in R^*$, we have $1/a \in R^*$ such that

a .(1/a) = 1 i.e., Each element in R^* has an inverse.

5. Commutativity: We know that multiplication of real numbers is

commutative.

i.e., $a \cdot b = b \cdot a$ for all $a, b \in R^*$.

Hence, $(R^*, .)$ is an abelian group.

Note: Show that set of all real numbers 'R' is not a group with respect to multiplication.

Solution: We have $0 \in R$.

The multiplicative inverse of 0 does not exist.

Hence. R is not a group.

Example: Let S be a finite set, and let F(S) be the collection of all functions f: S \rightarrow S under the operation of composition of functions, then show that F(S) is a monoid.

Is S a group w.r.t the above operation? Justify your answer.

Solution:

Let f_1 , f_2 , f_3 are three arbitrary functions on S.

<u>Closure property</u>: Composition of two functions on S is again a function on S.

i.e., $f_1 o f_2 \in F(S)$

Associativity: Composition of functions is associative.

i.e.,
$$(f_1 \circ f_2) \circ f_3 = f_1 \circ (f_2 \circ f_3)$$

Identity: We have identity function I : $S \rightarrow S$

such that $f_1 \circ I = f_1$.

 \therefore F(S) is a monoid.

Note: F(S) is not a group, because the inverse of a non bijective function on S does not exist.

Ex. If M is set of all non singular matrices of order 'n x n'.then show that M is a group w.r.t. matrix multiplication.

Is (M, *) an abelian group?. Justify your answer.

Solution: Let $A, B, C \in M$.

<u>1.Closure property</u> : Product of two non singular matrices is again a non singular matrix, because

 $\frac{1}{2}AB\frac{1}{2} = \frac{1}{2}A\frac{1}{2}$. $\frac{1}{2}B\frac{1}{2}$ ¹0 (Since, A and B are nonsingular)

i.e., $AB \in M$ for all $A, B \in M$.

2. <u>Associativity</u>: Marix multiplication is associative.

i.e., (AB)C = A(BC) for all $A,B,C \in M$.

- 3. <u>Identity</u>: We have $I_n \in M$ and $A I_n = A$ for all $A \in M$.
 - : Identity element exists, and ' I_n ' is the identity element.
- 4. <u>Inverse</u>: To each $A \in M$, we have $A^{-1} \in M$ such that

 $A A^{-1} = I_n$ i.e., Each element in M has an inverse.

∴ M is a group w.r.t. matrix multiplication.

We know that, matrix multiplication is not commutative.

Hence, M is not an abelian group.

Ex. Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a * b = (ab)/2.

Solution: Let A = set of all positive rational numbers.

Let a,b,c be any three elements of A.

1. <u>Closure property:</u> We know that, Product of two positive rational numbers is again a rational number.

i.e., a $*b \in A$ for all a, b $\in A$.

2. <u>Associativity</u>: (a*b)*c = (ab/2) * c = (abc) / 4

$$a^{*}(b^{*}c) = a^{*}(bc/2) = (abc)/4$$

3. <u>Identity</u>: Let e be the identity element.

We have $a^*e = (a e)/2 \dots (1)$, By the definition of *

again, a*e = a(2), Since e is the identity.

From (1)and (2), (a e)/2 = a \Rightarrow e = 2 and 2 \in A.

: Identity element exists, and '2' is the identity element in A.

4. Inverse: Let $a \in A$

let us suppose b is inverse of a.

Now, a * b = (a b)/2(1) (By definition of inverse.)

Again, a * b = e = 2(2) (By definition of inverse)

From (1) and (2), it follows that

(a b)/2 = 2=> $b = (4 / a) \in A$

 \therefore (A ,*) is a group.

Commutativity: a * b = (ab/2) = (ba/2) = b * a

Hence, (A, *) is an abelian group.

Ex. Let R be the set of all real numbers and * is a binary operation defined by a * b = a + b + a b. Show that (R, *) is a monoid.

Is (R, *) a group?. Justify your answer.

Try for yourself.

```
identity = 0
```

inverse of a = -a/(a+1)

Ex. If $E = \{0, \pm 2, \pm 4, \pm 6, \dots\}$, then the algebraic structure (E, +) is

- a) a semi group but not a monoid
- b) a monoid but not a group.
- c) a group but not an abelian group.

d) an abelian group.

Ans; d

Ex. Let A = Set of all rational numbers 'x' such that $0 < x \pm 1$. Then with respect to ordinary multiplication, A is

a) a semi group but not a monoid

b) a monoid but not a group.

c) a group but not an abelian group.

d) an abelian group.

Ans. b

Ex. Let C = Set of all non zero complex numbers .Then with respect to multiplication, C is

a) a semi group but not a monoid

b) a monoid but not a group.

c) a group but not an abelian group.

d) an abelian group.

Ans. d

Ex. In a group (G, *), Prove that the identity element is unique.

<u>Proof</u>: a) Let e_1 and e_2 are two identity elements in G.

Now, $e_1 * e_2 = e_1$...(1) (since e_2 is the identity)

Again, $e_1 * e_2 = e_2$...(2) (since e_1 is the identity)

From (1) and (2), we have $e_1 = e_2$

: Identity element in a group is unique.

Ex. In a group (G, *), Prove that the inverse of any element is unique.

<u>Proof</u>: Let $a, b, c \in G$ and e is the identity in G.

Let us suppose, Both b and c are inverse elements of a.

Now, $a * b = e \dots (1)$ (Since, b is inverse of a)

Again, a * c = e ...(2) (Since, c is also inverse of a)

From (1) and (2), we have

a * b = a * c

⇒ b = c (By left cancellation law) In a group, the inverse of any element is unique.

Ex. In a group (G, *), Prove that (a * b)⁻¹ = b⁻¹ * a⁻¹ for all a, b \in G.

Proof : Consider,

Similarly, we can show that

$$(b^{-1} * a^{-1}) * (a * b) = e$$

Hence, $(a * b)^{-1} = b^{-1} * a^{-1}$.

Ex. If (G, *) is a group and $a \in G$ such that a * a = a, then show that a = e, where e is identity element in G.

<u>Proof</u>: Given that, a * a = a

- $\begin{array}{l} \Rightarrow \ a * a = a * e \quad (\text{ Since, } e \text{ is identity in } G) \\ \Rightarrow \ a = e \quad (\text{ By left cancellation law}) \\ \text{Hence, the result follows.} \end{array}$
 - Ex. If every element of a group is its own inverse, then show that the group must be abelian .

Proof: Let (G, *) be a group.

Let a and b are any two elements of G.

Consider the identity,

 $(a * b)^{-1} = b^{-1} * a^{-1}$

 \Rightarrow (a * b) = b * a (Since each element of G is its own inverse) Hence, G is abelian.

Note:
$$a^2 = a * a$$

 $a^3 = a * a * a$ etc.

Ex. In a group (G, *), if $(a * b)^2 = a^2 * b^2$ "a,b \in G

then show that G is abelian group.

<u>Proof</u>: Given that $(a * b)^2 = a^2 * b^2$

 $\begin{array}{l} \Rightarrow \ (a * b) * (a * b) = \ (a * a) * (b * b) \\ \Rightarrow \ a * (b * a) * b = \ a * (a * b) * b \quad (By \ associative \ law) \\ \Rightarrow \ (b * a) * b = \ (a * b) * b \quad (By \ left \ cancellation \ law) \\ \Rightarrow \ (b * a) = \ (a * b) \quad (By \ right \ cancellation \ law) \\ Hence, G \ is \ abelian \ group. \end{array}$

3.2.2 Finite groups

Ex. Show that $G = \{1, -1\}$ is an abelian group under multiplication.

Solution: The composition table of G is

1. <u>Closure property</u>: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.

2. <u>Associativity</u>: The elements of G are real numbers, and we know that multiplication of real numbers is associative.

3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.

4. Inverse: From the composition table, we see that the inverse elements of

1 and -1 are 1 and -1 respectively.

Hence, G is a group w.r.t multiplication.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication..

Ex. Show that $G = \{1, w, w^2\}$ is an abelian group under multiplication. Where 1, w, w² are cube roots of unity.

Solution: The composition table of G is

 1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.

2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.

3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.

4. Inverse: From the composition table, we see that the inverse elements of

1 w, w^2 are 1, w^2 , w respectively.

Hence, G is a group w.r.t multiplication.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication.

Ex. Show that $G = \{1, -1, i, -i\}$ is an abelian group under multiplication.

Solution: The composition table of G is

. 1 -1 i -i 1 1 -1 i -i -1 -1 1 -i i i i -i -1 1 -i -i i 1 -1

1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.

2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.

3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.

4. Inverse: From the composition table, we see that the inverse elements of

1 -1, i, -i are 1, -1, -i, i respectively.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative. Hence, (G, .) is an abelian group.

Modulo systems.

<u>Addition modulo m</u> $(+_m)$

let m is a positive integer. For any two positive integers a and b

 $a +_m b = a + b$ if a + b < m $a +_m b = r$ if $a + b^3 m$ where r is the remainder obtained by dividing (a+b) with m. <u>Multiplication modulo p</u> (*m) let p is a positive integer. For any two positive integers a and b a *mb = ab if ab < p a *mb = r if ab < p a *mb = r if $ab^3 p$ where r is the remainder obtained by dividing (ab) with p. Ex. $3 *_5 4 = 2$, $5 *_5 4 = 0$, $2 *_5 2 = 4$

Example : The set $G = \{0, 1, 2, 3, 4, 5\}$ is a group with respect to addition modulo 6.

Solution: The composition table of G is

+ ₆	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under $+_6$.

2. <u>Associativity</u>: The binary operation $+_6$ is associative in G.

for ex. $(2 +_6 3) +_6 4 = 5 +_6 4 = 3$ and $2 +_6 (3 +_6 4) = 2 +_6 1 = 3$

3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row , i.e., 0 is the identity element.

4. <u>Inverse</u>: From the composition table, we see that the inverse elements of 0, 1, 2, 3, 4. 5 are 0, 5, 4, 3, 2, 1 respectively.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation $+_6$ is commutative.

Hence, $(G, +_6)$ is an abelian group.

Example : The set $G = \{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7.

Solution: The composition table of G is

*7	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

1. <u>Closure property:</u> Since all the entries of the composition table are the elements of the given set, the set G is closed under $*_7$.

2. <u>Associativity</u>: The binary operation $*_7$ is associative in G.

for ex. $(2 *_7 3) *_7 4 = 6 *_7 4 = 3$ and $2 *_7 (3 *_7 4) = 2 *_7 5 = 3$

3. <u>Identity</u>: Here, The first row of the table coincides with the top row. The element heading that row , i.e., 1 is the identity element.

4. . <u>Inverse</u>: From the composition table, we see that the inverse elements of 1, 2, 3, 4. 5 6 are 1, 4, 5, 2, 5, 6 respectively.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation $*_7$ is commutative.

Hence, $(G, *_7)$ is an abelian group.

More on finite groups

In a group with 2 elements, each element is its own inverse

In a group of even order there will be at least one element (other than identity element) which is its own inverse

The set G = {0,1,2,3,4,.....m-1} is a group with respect to addition modulo m.

The set $G = \{1,2,3,4,\dots,p-1\}$ is a group with respect to multiplication modulo p, where p is a prime number.

Order of an element of a group:

Let (G, *) be a group. Let 'a' be an element of G. The smallest integer n such that $a^n = e$ is called order of 'a'. If no such number exists then the order is infinite.

Ex. G = $\{1, -1, i, -i\}$ is a group w.r.t multiplication.The order -i is a) 2 b) 3 c) 4 d) 1

Ex. Which of the following is not true.

a) The order of every element of a finite group is finite and is a divisor of the order of the group.

b) The order of an element of a group is same as that of its inverse.

c) In the additive group of integers the order of every element except

0 is infinite

d) In the infinite multiplicative group of nonzero rational numbers the

order of every element except 1 is infinite.

Ans. D

3.3 Sub groups

Def. A non empty sub set H of a group (G, *) is a sub group of G,

if (H, *) is a group.

Note: For any group {G, *}, {e, * } and (G, *) are trivial sub groups.

Ex. $G = \{1, -1, i, -i\}$ is a group w.r.t multiplication.

 $H_1 = \ \{ \ 1, \ -1 \ \}$ is a subgroup of G .

 $H_2 = \{1\}$ is a trivial subgroup of G.

Ex. (Z, +) and (Q, +) are sub groups of the group (R +).

Theorem: A non empty sub set H of a group (G, *) is a sub group of G iff

i) a*b∈H "a,b∈H

ii) a⁻¹∈H "a∈H

Theorem

<u>Theorem</u>: A necessary and sufficient condition for a non empty subset H of a group (G, *) to be a sub group is that

 $a \in H$, $b \in H => a * b^{-1} \in H$.

Proof: Case1: Let (G, *) be a group and H is a subgroup of G

Let $a, b \in H \implies b^{-1} \in H$ (since H is is a group) => $a * b^{-1} \in H$. (By closure property in H)

<u>Case2</u>: Let H be a non empty set of a group (G, *).

Let $a * b^{-1} \in H$ "a, b $\in H$

Now, $a^* a^{-1} \in H$ (Taking b = a)

 $=> e \in H$ i.e., identity exists in H.

Now, $e \in H$, $a \in H => e^* a^{-1} \in H$

=> a⁻¹ ∈ H

: Each element of H has inverse in H.

Further, $a \in H$, $b \in H \Rightarrow a \in H$, $b^{-1} \in H$ $\Rightarrow a * (b^{-1})^{-1} \in H$. $\Rightarrow a * b \in H$. \therefore H is closed w.r.t *.

Finally, Let $a, b, c \in H$

 $\Rightarrow a,b,c \in G \text{ (since H I G)}$ $\Rightarrow (a * b) * c = a * (b * c)$ ∴ * is associative in H

Hence, H is a subgroup of G.

<u>Theorem:</u> A necessary and sufficient condition for a non empty finite subset H of a group (G, *) to be a sub group is that

 $a * b \in H$ for all $a, b \in H$

Proof: Assignment.

Example : Show that the intersection of two sub groups of a group G is again a sub group of G.

Proof: Let (G, *) be a group.

Let H_1 and H_2 are two sub groups of G.

Let $a, b \in H_1 \cap H_2$.

Now, a, $b \in H_1 \Rightarrow a^* b^{-1} \in H_1$ (Since, H_1 is a subgroup of G)

again, a, $b \in H_2 \Rightarrow a * b^{-1} \in H_2$ (Since, H_2 is a subgroup of G)

 \therefore a * b⁻¹ \in H₁ \cap H₂.

Hence, $H_1\cap H_2$ is a subgroup of G .

Ex. Show that the union of two sub groups of a group G need not be a sub group of G.

<u>Proof</u>: Let G be an additive group of integers.

Let $H_1 = \{0, \pm 2, \pm 4, \pm 6, \pm 8, \dots\}$

and $H_2 = \{0, \pm 3, \pm 6, \pm 9, \pm 12, \dots\}$

Here, H_1 and H_2 are groups w.r.t addition.

Further, H_1 and H_2 are subsets of G.

 \therefore H₁ and H₂ are sub groups of G.

 $H_1 \cup H_2 = \{0, \pm 2, \pm 3, \pm 4, \pm 6, \dots\}$

Here, $H_1 U H_2$ is not closed w.r.t addition.

For ex. $2, 3 \in G$

But, 2 + 3 = 5 and 5 does not belongs to $H_1 \cup H_2$.

Hence, $H_1 \cup H_2$ is not a sub group of G.

Homomorphism and Isomorphism.

Homomorphism : Consider the groups (G, *) and (G^1, \oplus)

A function $f: G \rightarrow G^1$ is called a homomorphism if

 $f(a * b) = f(a) \bigoplus f(b)$

Isomorphism : If a homomorphism $f: G \rightarrow G^1$ is a bijection then f is called isomorphism between G and G^1 .

Then we write $G \equiv G^1$

Example : Let R be a group of all real numbers under addition and R^+ be a group of all positive real numbers under multiplication. Show that the mapping $f: R \rightarrow R^+$ defined by $f(x) = 2^x$ for all $x \in R$ is an isomorphism.

<u>Solution</u>: First, let us show that f is a homomorphism.

Let $a, b \in \mathbb{R}$.

Now, $f(a+b) = 2^{a+b}$

= 2^a 2^b

= f(a).f(b)

 \therefore f is an homomorphism.

Next, let us prove that f is a Bijection.

For any $a, b \in R$, Let, f(a) = f(b)

=> 2^a = 2^b

=> a = b

 \therefore f is one.to-one.

Next, take any $c \in R^+$.

Then $\log_2 c \in R$ and f ($\log_2 c$) = 2 $\log^2 c = c$.

 \Rightarrow Every element in R⁺ has a pre image in R.

i.e., f is onto.

 \therefore f is a bijection.

Hence, f is an isomorphism.

Ex. Let R be a group of all real numbers under addition and R^+ be a group of all positive real numbers under multiplication. Show that the mapping $f: R^+ \rightarrow R$ defined by $f(x) = \log_{10} x$ for all $x \in R$ is an isomorphism.

Solution: First, let us show that f is a homomorphism.

Let a , b $\in R^+$.

Now, $f(a.b) = log_{10} (a.b)$

 $= \log_{10} a + \log_{10} b$

= f(a) + f(b)

 \therefore f is an homomorphism.

Next, let us prove that f is a Bijection.

For any $a, b \in R^+$, Let, f(a) = f(b)=> $\log_{10} a = \log_{10} b$ => a = b \therefore f is one.to-one. Next, take any $c \in R$.

Then $10^{c} \in R$ and f (10^c) = log_{10} 10^c = c.

 \Rightarrow Every element in R has a pre image in R⁺.

i.e., f is onto.

 \therefore f is a bijection.

Hence, f is an isomorphism.

<u>Theorem</u>: Consider the groups (G_1 , *) and (G_2 , \oplus) with identity elements e_1 and e_2 respectively. If $f : G_1 \rightarrow G_2$ is a group homomorphism, then prove that

a) $f(e_1) = e_2$

b)
$$f(a^{-1}) = [f(a)]^{-1}$$

c) If H_1 is a sub group of G_1 and $H_2 = f(H_1)$,

then H_2 is a sub group of G_2 .

d) If f is an isomorphism from G_1 onto G_2 ,

then f^{-1} is an isomorphism from G_2 onto G_1 .

Proof: a) we have in G₂,

$e_2 \bigoplus f(e_1) = f(e_1)$	(since, e_2 is identity in G_2)
$= f(e_1 * e_1)$	(since, e_1 is identity in G_1)
$= f(e_1) \bigoplus f(e_1)$	(since f is a homomorphism)
$e_2 = f(e_1)$	(By right cancellation law)

b) For any $a \in G_1$, we have

$$f(a) \bigoplus f(a^{-1}) = f(a^* a^{-1}) = f(e_1) = e_2$$

and $f(a^{-1}) \bigoplus f(a) = f(a^{-1} * a) = f(e_1) = e_2$

 \therefore f(a⁻¹) is the inverse of f(a) in G₂

i.e., [f(a)]⁻¹ = f(a⁻¹)

c) $H_2 = f(H_1)$ is the image of H_1 under f; this is a subset of G_2 .

Let $x, y \in H_2$.

Then x = f(a), y = f(b) for some $a, b \in H_1$

Since, H_1 is a subgroup of G_1 , we have a * b⁻¹ \in H_1 .

Consequently,

$$x \bigoplus y^{-1} = f(a) \bigoplus [f(b)]^{-1}$$

= $f(a) \bigoplus f(b^{-1})$
= $f(a * b^{-1}) \in f(H_1) = H_2$

Hence, H_2 is a subgroup of G_2 .

d) Since $f\,:G_1 \rightarrow G_2\,$ is an isomorphism, $f\,$ is a bijection.

 $\therefore f^{-1}: G_2 \rightarrow G_1$ exists and is a bijection.

Let $x, y \in G_2$. Then $x \bigoplus y \in G_2$

and there exists $a, b \in G_1$ such that x = f(a) and y = f(b).

∴
$$f^{-1}(x \bigoplus y) = f^{-1}(f(a) \bigoplus f(b))$$

= $f^{-1}(f(a^* b))$
= $a^* b$
= $f^{-1}(x)^* f^{-1}(y)$

■ This shows that $f^{-1}: G_2 \rightarrow G_1$ is an homomorphism as well.

 \therefore f⁻¹ is an isomorphism.

3.3 Cosets

If H is a sub group of(G, *) and a \in G then the set

Ha = { $h * a \mid h \in H$ }is called a right coset of H in G.

Similarly $aH = \{a * h \mid h \in H\}$ is called a left coset of H is G.

Note:- 1) Any two left (right) cosets of H in G are either identical or disjoint.

2) Let H be a sub group of G. Then the right cosets of H form a partition of G. i.e., the union of all right cosets of a sub group H is equal to G.

3) <u>Lagrange's theorem</u>: The order of each sub group of a finite group is a divisor of the order of the group.

4) The order of every element of a finite group is a divisor of the order of the group.

5) The converse of the lagrange's theorem need not be true.

Ex. If G is a group of order p, where p is a prime number. Then the number of sub groups of G is

a) 1 b) 2 c) p - 1 d) p

Ans. b

Ex. Prove that every sub group of an abelian group is abelian.

<u>Solution</u>: Let (G, *) be a group and H is a sub group of G.

Let a , b \in H

 \Rightarrow a , b \in G (Since H is a subgroup of G)

 \Rightarrow a * b = b * a (Since G is an abelian group)

Hence, H is also abelian.

State and prove Lagrange's Theorem

Lagrange's theorem: The order of each sub group H of a finite

group G is a divisor of the order of the group.

<u>Proof</u>: Since G is finite group, H is finite.

Therefore, the number of cosets of H in G is finite.

Let Ha₁,Ha₂, ...,Ha_r be the distinct right cosets of H in G.

Then, $G = Ha_1UHa_2U \dots, UHa_r$

So that $O(G) = O(Ha_1)+O(Ha_2) \dots + O(Ha_r)$.

But, $O(Ha_1) = O(Ha_2) = = O(Ha_r) = O(H)$

:: O(G) = O(H)+O(H) ...+ O(H). (r terms)

= r . O(H)

This shows that O(H) divides O(G).

3.4 Lattices and Boolean algebra: Lattices and Partially Ordered sets, Boolean algebra.

Lattice and its Properties:

Introduction:

A lattice is a partially ordered set (L, \pounds) in which every pair of elements a, b $\hat{I} L$ has a greatest lower bound and a least upper bound.

The glb of a subset, $\{a, b\}$ Í L will be denoted by a * b and the lub by a Å b.

Usually, for any pair a, b Î L, GLB $\{a, b\} = a * b$, is called the **meet** or **product** and LUB $\{a, b\} = a \text{ Å } b$, is called the **join** or **sum** of a and b.

Example1 Consider a non-empty set S and let P(S) be its power set. The relation I "contained in" is a partial ordering on P(S). For any two subsets A, BIP(S) GLB {A, B} and LUB {A, B} are evidently A ζ B and A \check{E} B respectively.

Example2 Let I+ be the set of positive integers, and D denote the relation of "division" in I+ such that for any a, b Î I+ , a D b iff a divides b. Then (I+, D) is a lattice in which

the join of a and b is given by the least common multiple(LCM) of a and b, that is, a Å b = LCM of a and b, and the meet of a and b, that is , a * b is the greatest common divisor

a A b = LCM of a and b, and the meet of a and b, that is , a * b is the greatest common divisor (GCD) of a and b.

A lattice can be conveniently represented by a diagram.

For example, let Sn be the set of all divisors of n, where n is a positive integer. Let D denote the

relation "division" such that for any a, b Î Sn, a D b iff a divides b.

Then (Sn, D) is a lattice with a * b = gcd(a, b) and a Å b = lcm(a, b).

Take n=6. Then $S6 = \{1, 2, 3, 6\}$. It can be represented by a diagram in

Fig(1). Take n=8. Then $S8 = \{1, 2, 4, 8\}$

Two lattices can have the same diagram. For example if $S = \{1, 2, 3\}$ then (p(s), \hat{I}) and (S6,D)

have the same diagram viz. fig(1), but the nodes are differently labeled. We observe that for any partial ordering relation £ on a set S the converse relation ³ is also partial ordering relation on S. If (S, £) is a lattice With meet a * b and join a Å b , then (S, ³) is the also a lattice with meet a Å b and join a * b i.e., the GLB and LUB get interchanged . Thus we have the principle of duality of lattice as follows.

Any statement about lattices involving the operations $^{\text{and V}}$ and $^{\text{blue}}$ and $^{\text{and S}}$ and a and a and

The operation ^ and V are called duals of each other as are the relations £ and 3 .. Also, the lattice (L, £) and (L, 3) are called the duals of each other.

Properties of lattices:

Let (L, \mathfrak{t}) be a lattice with the binary operations * and Å then for any a, b, c $\hat{I}L$,

- a * a = a $a \mathring{A} a = a$ (Idempotent)
- a * b = b * a , $a \mathring{A} b = b \mathring{A} a$ (Commutative)
- (a * b) * c = a * (b * c) , (a Å) Å c = a Å (b Å c)

o (Associative)

• $a * (a \mathring{A} b) = a$, $a \mathring{A} (a * b) = a$ (absorption)

For any a ÎL, a \pm a, a \pm LUB {a, b} => a \pm a * (a Å b). On the other hand, GLB {a, a Å b} \pm a i.e., (a Å b) Å a, hence a * (a Å b) = a

Theorem 1

Let (L, \pounds) be a lattice with the binary operations * and Å denote the operations of meet and join respectively For any a, b \hat{I} L,

 $a \pounds b \circ a * b = a \circ a \mathring{A} b = b$

Proof

Suppose that a £ b. we know that a £ a, a £ GLB $\{a, b\}$, i.e., a £ a * b. But from the definition of a * b, we get a * b £ a. Hence $a \pm b \Rightarrow a + b = a$ (1) Now we assume that a * b = a; but is possible only if $a \pounds b$, that is a $* b = a \Rightarrow a \pounds b$ (2)From (1) and (2), we get a \pounds b ó a * b = a. Suppose a * b = a. then b Å (a * b) = b Å a = a Å b (3) but b Å (a * b) = b (by iv)..... (4)Hence a Å b = b, from (3) => (4) (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1). Hence these are equivalent. Let us assume a * b = a. Now (a * b) Å b = a Å b

Now (a * b) A b = a A bWe know that by absorption law, (a * b) Å b = bso that a Å b = b, therefore a * b = a P a Å b = b (5) similarly, we can prove a Å b = b P a * b = a (6) From (5) and (6), we get a * b = a Û a Å b = bHence the theorem.

Theorem2 For any a, b, c Î L, where (L, \pounds) is a lattice. b $\pounds c \Rightarrow \{ a * b \pounds a * c \text{ and} \\ \{ a Å b \pounds a Å c \} \}$

Proof Suppose $b \pounds c$. we have proved that $b \pounds a \circ b \ast c = b$(1)

Now consider (a * b) * (a * c) = (a * a) * (b * c) (by Idempotent) = a * (b * c) Thus (a * b) * (a * c) = a * b which => $(a * b) \pounds (a * c)$ Similarly (a Å b) Å (a Å c) = (a Å a) Å (b Å c)= a Å (b Å c) = a Å c which => $(a Å b) \pounds (a Å c)$

note: These properties are known as isotonicity.

•