Unit-III: Algebraic Structures

Algebraic Structures:

Algebraic Systems: Examples and General Properties, Semi groups and Monoids, Polish expressions and their compilation, Groups: Definitions and Examples, Subgroups and Homomorphism's, Group Codes.

Lattices and Boolean algebra:
Lattices and Partially Ordered sets, Boolean algebra.

3.1 Algebraic systems

$N=\{1,2,3,4, \ldots .\}=$. Set of all natural numbers.
$Z=\{0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots .\}=$. Set of all integers.
$Q=$ Set of all rational numbers.
$R=$ Set of all real numbers.
Binary Operation: The binary operator * is said to be a binary operation (closed operation) on a non- empty set A, if
$a * b \in A \quad$ for all $\quad a, b \in A \quad$ (Closure property).
Ex: The set N is closed with respect to addition and multiplication but not w.r.t subtraction and division.
3.1.1 Algebraic System: A set A with one or more binary(closed) operations defined on it is called an algebraic system.

Ex: ($N,+$), ($Z,+,-),(R,+, .,-)$ are algebraic systems.

3.1.2 Properties

Associativity: Let * be a binary operation on a set A.
The operation * is said to be associative in A if
$\left(a^{*} b\right){ }^{*} c=a *(b * c)$ for $a l l a, b, c$ in A
Identity: For an algebraic system ($\mathrm{A},{ }^{*}$), an element ' e ' in A is said to be an identity element of A if $a^{*} e=e * a=a$ for all $a \in A$.

Note: For an algebraic system (A, *), the identity element, if exists, is unique.
Inverse: Let $\left(\mathrm{A},{ }^{*}\right)$ be an algebraic system with identity ' e '. Let a be an element in A. An element b is said to be inverse of A if

$$
a * b=b * a=e
$$

3.1.3 Semi groups

Semi Group: An algebraic system (A, *) is said to be a semi group if

1. ${ }^{*}$ is closed operation on A .
2. * is an associative operation, for all a, b, c in A.

Ex. $(\mathrm{N},+)$ is a semi group.
Ex. ($\mathrm{N},$.) is a semi group.
Ex. ($\mathrm{N},-$) is not a semi group.

3.1.4 Monoid

An algebraic system $\left(\mathrm{A},{ }^{*}\right)$ is said to be a monoid if the following conditions are satisfied.

1) * is a closed operation in A.
2) * is an associative operation in A.
3) There is an identity in A.

Ex. Show that the set ' N ' is a monoid with respect to multiplication.
Solution: Here, $N=\{1,2,3,4, \ldots . .$.

1. Closure property: We know that product of two natural numbers is again a natural number.
i.e., $a . b=b . a \quad$ for $a l l a, b \in N$
\therefore Multiplication is a closed operation.
2. Associativity: Multiplication of natural numbers is associative.
i.e., (a.b).c $=a .(b . c) \quad$ for $a l l a, b, c \in N$
3. Identity: We have, $1 \in N$ such that
a.1 $=1 . a=a$ for all $a \in N$.
\therefore Identity element exists, and 1 is the identity element.
Hence, N is a monoid with respect to multiplication.

Examples

Ex. Let $\left(Z,{ }^{*}\right)$ be an algebraic structure, where Z is the set of integers
and the operation * is defined by $n * m=$ maximum of (n, m).
Show that $\left(Z,{ }^{*}\right)$ is a semi group.
Is $\left(Z,{ }^{*}\right)$ a monoid ?. Justify your answer.

Solution: Let a, b and c are any three integers.
Closure property: Now, $\mathrm{a} * \mathrm{~b}=$ maximum of $(\mathrm{a}, \mathrm{b}) \in \mathrm{Z}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{Z}$
Associativity : $(a * b) * c=$ maximum of $\{a, b, c\}=a *(b * c)$
$\therefore\left(Z,{ }^{*}\right)$ is a semi group.
Identity: There is no integer x such that
$a^{*} x=$ maximum of $(a, x)=a \quad$ for all $a \in Z$
\therefore Identity element does not exist. Hence, $\left(Z,{ }^{*}\right)$ is not a monoid.
Ex. Show that the set of all strings ' S ' is a monoid under the operation 'concatenation of strings'.

Is S a group w.r.t the above operation? Justify your answer.
Solution: Let us denote the operation

$$
\text { ‘concatenation of strings’ by }+ \text {. }
$$

Let s_{1}, s_{2}, s_{3} are three arbitrary strings in S.
Closure property: Concatenation of two strings is again a string.

$$
\text { i.e., } s_{1}+s_{2} \in S
$$

Associativity: Concatenation of strings is associative.

$$
\left(s_{1}+s_{2}\right)+s_{3}=s_{1}+\left(s_{2}+s_{3}\right)
$$

Identity: We have null string , $I \in S$ such that $s_{1}+I=S$.
$\therefore \mathrm{S}$ is a monoid.
Note: S is not a group, because the inverse of a non empty string does not exist under concatenation of strings.

3.2 Groups

Group: An algebraic system $\left(\mathrm{G},{ }^{*}\right)$ is said to be a group if the following conditions are satisfied.

1) * is a closed operation.
2) * is an associative operation.
3) There is an identity in G.
4) Every element in G has inverse in G.

Abelian group (Commutative group): A group ($\mathrm{G},{ }^{*}$) is
said to be abelian (or commutative) if

$$
a * b=b * a \quad " a, b \in G .
$$

Properties

In a Group (G, *) the following properties hold good

1. Identity element is unique.
2. Inverse of an element is unique.
3. Cancellation laws hold good

$$
\begin{array}{ll}
a * b=a * c \Rightarrow b=c & \text { (left cancellation law) } \\
a * c=b * c \Rightarrow a=b & \text { (Right cancellation law) }
\end{array}
$$

4. $(a * b)^{-1}=b^{-1} * a^{-1}$

In a group, the identity element is its own inverse.
Order of a group : The number of elements in a group is called order of the group.
Finite group: If the order of a group G is finite, then G is called a finite group.
Ex1. Show that, the set of all integers is an abelian group with respect to addition.
Solution: Let $Z=$ set of all integers.
Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are any three elements of Z .

1. Closure property: We know that, Sum of two integers is again an integer.

$$
\text { i.e., } a+b \in Z \text { for } a l l a, b \in Z
$$

2. Associativity: We know that addition of integers is associative.

$$
\text { i.e., }(a+b)+c=a+(b+c) \quad \text { for } a l l a, b, c \in Z .
$$

3. Identity: We have $0 \in Z$ and $a+0=a$ for all $a \in Z$.
\therefore Identity element exists, and ' 0 ' is the identity element.
4. Inverse: To each $a \in Z$, we have $-a \in Z$ such that

$$
a+(-a)=0
$$

Each element in Z has an inverse.
5. Commutativity: We know that addition of integers is commutative.
i.e., $a+b=b+a \quad$ for $a l l a, b \in Z$.

Hence, ($Z,+$) is an abelian group.

Ex2. Show that set of all non zero real numbers is a group with respect to multiplication .
Solution: Let $\mathrm{R}^{*}=$ set of all non zero real numbers.
Let a, b, c are any three elements of R^{*}.

1. Closure property : We know that, product of two nonzero real numbers is again a nonzero real number.
i.e., $a . b \in R^{*}$ for all $a, b \in R^{*}$.
2. Associativity: We know that multiplication of real numbers is associative.

$$
\text { i.e., (a.b).c }=\text { a.(b.c) for all } a, b, c \in R^{*} \text {. }
$$

3. Identity: We have $1 \in R^{*}$ and $a .1=a$ for all $a \in R^{*}$.
\therefore Identity element exists, and ' 1 ' is the identity element.
4. Inverse: To each $a \in R^{*}$, we have $1 / a \in R^{*}$ such that
a $.(1 / a)=1 \quad$ i.e., Each element in R^{*} has an inverse.
5.Commutativity: We know that multiplication of real numbers is
commutative.
i.e., $a \cdot b=b . a \quad$ for $a l l a, b \in R^{*}$.

Hence, ($\left.\mathrm{R}^{*},.\right)$ is an abelian group.
Note: Show that set of all real numbers ' R ' is not a group with respect to multiplication.
Solution: We have $0 \in R$.

The multiplicative inverse of 0 does not exist.
Hence. R is not a group.
Example: Let S be a finite set, and let $F(S)$ be the collection of all functions f : $S \rightarrow S$ under the operation of composition of functions, then show that $F(S)$ is a monoid.

Is S a group w.r.t the above operation? Justify your answer.

Solution:
Let f_{1}, f_{2}, f_{3} are three arbitrary functions on S.

Closure property: Composition of two functions on S is again a function on S.

$$
\text { i.e., } f_{1} \circ f_{2} \in F(S)
$$

Associativity: Composition of functions is associative.

$$
\text { i.e., }\left(f_{1} \circ f_{2}\right) \circ f_{3}=f_{1} \circ\left(f_{2} \circ f_{3}\right)
$$

Identity: We have identity function I: S \rightarrow S

$$
\text { such that } \mathrm{f}_{1} \circ \mathrm{l}=\mathrm{f}_{1} \text {. }
$$

$\therefore \mathrm{F}(\mathrm{S})$ is a monoid.
Note: $F(S)$ is not a group, because the inverse of a non bijective function on S does not exist.

Ex. If M is set of all non singular matrices of order ' $n \times n$ '.
then show that M is a group w.r.t. matrix multiplication.
Is $\left(M,{ }^{*}\right)$ an abelian group?. Justify your answer.
Solution: Let $A, B, C \in M$.
1.Closure property : Product of two non singular matrices is again a non singular matrix, because
$1 / 2 A B 1 / 2=1 / 2 A 1 / 2.1 / 2 B^{1 / 2}{ }^{1} 0$ (Since, A and B are nonsingular) i.e., $A B \in M$ for all $A, B \in M$.
2. Associativity: Marix multiplication is associative.

$$
\text { i.e., }(A B) C=A(B C) \text { for all } A, B, C \in M \text {. }
$$

3. Identity: We have $I_{n} \in M$ and $A I_{n}=A$ for all $A \in M$.
\therefore Identity element exists, and ' I_{n} ' is the identity element.
4. Inverse: To each $A \in M$, we have $A^{-1} \in M$ such that

$$
A A^{-1}=I_{n} \quad \text { i.e., Each element in } M \text { has an inverse. }
$$

$\therefore \mathrm{M}$ is a group w.r.t. matrix multiplication.
We know that, matrix multiplication is not commutative.
Hence, M is not an abelian group.
Ex. Show that the set of all positive rational numbers forms an abelian group under the composition * defined by

$$
a^{*} b=(a b) / 2 .
$$

Solution: Let $\mathrm{A}=$ set of all positive rational numbers.
Let a, b, c be any three elements of A.

1. Closure property: We know that, Product of two positive rational numbers is again a rational number.
i.e., $a * b \in A$ for all $a, b \in A$.
2. Associativity: $\quad\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*} \mathrm{c}=(\mathrm{ab} / 2) * \mathrm{c}=(\mathrm{abc}) / 4$

$$
a *(b * c)=a *(b c / 2)=(a b c) / 4
$$

3. Identity: Let e be the identity element.

We have $a^{*} e=(a e) / 2 \ldots(1), B y$ the definition of *
again, $\quad a^{*} e=a \quad(2)$, Since e is the identity.
From (1) and (2), $(\mathrm{ae}) / 2=a \quad \Rightarrow e=2$ and $2 \in A$.
\therefore Identity element exists, and ' 2 ' is the identity element in A.
4. Inverse: Let $a \in A$
let us suppose b is inverse of a.
Now, $a * b=(a b) / 2 \ldots$...(1) \quad (By definition of inverse.)
Again, $a * b=e=2 \ldots . .(2) \quad$ (By definition of inverse)
From (1) and (2), it follows that

$$
\begin{aligned}
& (a b) / 2=2 \\
\Rightarrow & b=(4 / a) \in A
\end{aligned}
$$

$\therefore\left(\mathrm{A},{ }^{*}\right)$ is a group.
Commutativity: $\quad \mathrm{a}$ * $\mathrm{b}=(\mathrm{ab} / 2)=(\mathrm{ba} / 2)=\mathrm{b}$ * a
Hence, ($\mathrm{A},{ }^{*}$) is an abelian group.
Ex. Let R be the set of all real numbers and * is a binary operation defined by a $b=a+b$ $+a b$. Show that $\left(R,^{*}\right)$ is a monoid.

Is ($\mathrm{R},{ }^{*}$) a group?. Justify your answer.
Try for yourself.
identity $=0$
inverse of $a=-a /(a+1)$
Ex. If $E=\{0, \pm 2, \pm 4, \pm 6, \ldots . .$.$\} , then the algebraic structure (E,+)$ is
a) a semi group but not a monoid
b) a monoid but not a group.
c) a group but not an abelian group.
d) an abelian group.

Ans; d
Ex. Let A = Set of all rational numbers ' x ' such that $0<x £ 1$.
Then with respect to ordinary multiplication, A is
a) a semi group but not a monoid
b) a monoid but not a group.
c) a group but not an abelian group.
d) an abelian group.

Ans. b
Ex. Let $\mathrm{C}=$ Set of all non zero complex numbers . Then with respect to multiplication, C is
a) a semi group but not a monoid
b) a monoid but not a group.
c) a group but not an abelian group.
d) an abelian group.

Ans.d
Ex. In a group (G, *), Prove that the identity element is unique.
Proof: a) Let e_{1} and e_{2} are two identity elements in G .
Now, $e_{1} * e_{2}=e_{1} \quad \ldots$ (1) (since e_{2} is the identity)
Again, $e_{1} * e_{2}=e_{2} \quad$..(2) (since e_{1} is the identity)
From (1) and (2), we have $e_{1}=e_{2}$
\therefore Identity element in a group is unique.
Ex. In a group (G, ${ }^{*}$), Prove that the inverse of any element is unique.
Proof: Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G}$ and e is the identity in G .
Let us suppose, Both band care inverse elements of a .
Now, $a * b=e \quad . . .(1) \quad$ (Since, b is inverse of $a)$
Again, a * c = e ...(2) (Since, c is also inverse of a)
From (1) and (2), we have

$$
a * b=a * c
$$

$\Rightarrow \mathrm{b}=\mathrm{c} \quad$ (By left cancellation law)
In a group, the inverse of any element is unique.
Ex. In a group (G, *), Prove that

$$
(a * b)^{-1}=b^{-1} * a^{-1} \text { for all } a, b \in G .
$$

Proof: Consider,

$$
\begin{array}{rlrl}
(a * b) *\left(b^{-1} * a^{-1}\right) & & \\
& =\left(a *\left(b * b^{-1}\right) * a^{-1}\right) & & \text { (By associative property). } \\
& =\left(a * e^{*} a^{-1}\right) & & \text { (By inverse property) } \\
& =\left(a * a^{-1}\right) & & \text { (Since, } e \text { is identity) } \\
& =e & & \text { (By inverse property) }
\end{array}
$$

Similarly, we can show that
$\left(b^{-1} * a^{-1}\right) *(a * b)=e$
Hence, $\left(a^{*} b\right)^{-1}=b^{-1} * a^{-1}$.
Ex. If $\left(\mathrm{G},{ }^{*}\right)$ is a group and $\mathrm{a} \in \mathrm{G}$ such that $\mathrm{a} * \mathrm{a}=\mathrm{a}$, then show that $a=e$, where e is identity element in G.

Proof: Given that, $\mathrm{a} * \mathrm{a}=\mathrm{a}$
$\Rightarrow \mathrm{a} * \mathrm{a}=\mathrm{a} * \mathrm{e} \quad($ Since, e is identity in G)
$\Rightarrow \mathrm{a}=\mathrm{e} \quad$ (By left cancellation law)
Hence, the result follows.
Ex. If every element of a group is its own inverse, then show that the group must be abelian .

Proof: Let $\left(\mathrm{G},{ }^{*}\right)$ be a group.
Let a and b are any two elements of G .
Consider the identity,

$$
(a * b)^{-1}=b^{-1} * a^{-1}
$$

$\Rightarrow(\mathrm{a} * \mathrm{~b})=\mathrm{b} * \mathrm{a} \quad($ Since each element of G is its own inverse)
Hence, G is abelian.
Note: $a^{2}=a * a$ $a^{3}=a^{*} a * a$ etc.

Ex. In a group $\left(G,{ }^{*}\right)$, if $(a * b)^{2}=a^{2} * b^{2} \quad " a, b \in G$
then show that G is abelian group.

Proof: Given that $(a * b)^{2}=a^{2} * b^{2}$
$\Rightarrow(\mathrm{a} * \mathrm{~b}) *(\mathrm{a} * \mathrm{~b})=(\mathrm{a} * \mathrm{a}) *(\mathrm{~b} * \mathrm{~b})$
$\Rightarrow \mathrm{a} *(\mathrm{~b} * \mathrm{a})^{*} \mathrm{~b}=\mathrm{a} *(\mathrm{a} * \mathrm{~b}) * \mathrm{~b}$ (By associative law)
$\Rightarrow(\mathrm{b} * \mathrm{a})^{*} \mathrm{~b}=(\mathrm{a} * \mathrm{~b}) * \mathrm{~b} \quad$ (By left cancellation law)
$\Rightarrow\left(\mathrm{b}^{*} \mathrm{a}\right)=(\mathrm{a} * \mathrm{~b}) \quad$ (By right cancellation law)
Hence, G is abelian group.

3.2.2 Finite groups

Ex. Show that $G=\{1,-1\}$ is an abelian group under multiplication.
Solution: The composition table of G is

$$
\begin{array}{rrr}
. & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}
$$

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
2. Associativity: The elements of G are real numbers, and we know that multiplication of real numbers is associative.
3. Identity: Here, 1 is the identity element and $1 \in G$.
4. Inverse: From the composition table, we see that the inverse elements of

1 and -1 are 1 and -1 respectively.
Hence, G is a group w.r.t multiplication.
5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication..
Ex. Show that $G=\left\{1, w, w^{2}\right\}$ is an abelian group under multiplication.
Where $1, w, w^{2}$ are cube roots of unity.
Solution: The composition table of G is

$$
\begin{array}{cccc}
& 1 & w & w^{2} \\
1 & 1 & w & w^{2} \\
w & w & w^{2} & 1 \\
w^{2} & w^{2} & 1 & w
\end{array}
$$

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
2. Associativity: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
3. Identity: Here, 1 is the identity element and $1 \in G$.
4. Inverse: From the composition table, we see that the inverse elements of
$1 \mathrm{w}, \mathrm{w}^{2}$ are $1, \mathrm{w}^{2}$, w respectively.
Hence, G is a group w.r.t multiplication.
5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication.
Ex. Show that $G=\{1,-1, i,-i\}$ is an abelian group under multiplication.
Solution: The composition table of G is

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
2. Associativity: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
3. Identity: Here, 1 is the identity element and $1 \in G$.
4. Inverse: From the composition table, we see that the inverse elements of
$1-1, i,-i$ are $1,-1,-i, i \quad$ respectively.
5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative. Hence, (G, .) is an abelian group. Modulo systems.

Addition modulo m ($+_{m}$)
let m is a positive integer. For any two positive integers a and b
$a+m b=a+b$ if $a+b<m$
$a+m b=r$ if $a+b^{3} m$ where r is the remainder obtained
by dividing ($\mathrm{a}+\mathrm{b}$) with m .
Multiplication modulo p (${ }^{*} \mathrm{~m}$)
let p is a positive integer. For any two positive integers a and b

$$
\begin{aligned}
a * m b=a b & \text { if } a b<p \\
a * m b=r & \text { if } a b^{3} p \quad \text { where } r \text { is the remainder obtained } \\
& \quad \text { by dividing (ab) with } p .
\end{aligned}
$$

Ex. $3 *_{5} 4=2, \quad 5 *_{5} 4=0 \quad, \quad 2 *_{5} 2=4$

Example : The set $G=\{0,1,2,3,4,5\}$ is a group with respect to addition modulo 6.
Solution: The composition table of G is

$+_{6}$	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under ${ }_{6}$.
2. Associativity: The binary operation ${ }_{6}$ is associative in G.

$$
\begin{aligned}
\text { for ex. }\left(2+{ }_{6} 3\right)+{ }_{6} 4 & =5+{ }_{6} 4=3 \text { and } \\
2+{ }_{6}(3+64) & =2+{ }_{6} 1=3
\end{aligned}
$$

3. Identity: Here, The first row of the table coincides with the top row. The element heading that row, i.e., 0 is the identity element.
4. . Inverse: From the composition table, we see that the inverse elements of $0,1,2,3,4.5$ are $0,5,4,3,2,1$ respectively.
5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation $+_{6}$ is commutative.

Hence, $\left(G,+_{6}\right)$ is an abelian group.
Example : The set $G=\{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7.

Solution: The composition table of G is

${ }_{7}$	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

1. Closure property: Since all the entries of the composition table are the elements of the given set, the set G is closed under ${ }^{*} 7$.
2. Associativity: The binary operation ${ }_{7}$ is associative in G.

$$
\begin{gathered}
\text { for ex. }\left(2 *_{7} 3\right) *_{7} 4=6 *_{7} 4=3 \text { and } \\
2 *_{7}\left(3 *_{7} 4\right)=2 *_{7} 5=3
\end{gathered}
$$

3. Identity: Here, The first row of the table coincides with the top row. The element heading that row , i.e., 1 is the identity element.
4. . Inverse: From the composition table, we see that the inverse elements of 1, 2, 3, 4.56 are $1,4,5,2,5,6$ respectively.
5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation ${ }_{7}$ is commutative.

Hence, ($G,{ }^{*}$) is an abelian group.

More on finite groups

In a group with 2 elements, each element is its own inverse
In a group of even order there will be at least one element (other than identity element) which is its own inverse

The set $G=\{0,1,2,3,4, \ldots . . \mathrm{m}-1\}$ is a group with respect to addition modulo m.

The set $\mathrm{G}=\{1,2,3,4, \ldots . \mathrm{p}-1\}$ is a group with respect to multiplication modulo p, where p is a prime number.

Order of an element of a group:

Let $\left(G,{ }^{*}\right)$ be a group. Let ' a ' be an element of G. The smallest integer n such that $a^{n}=e$ is called order of ' a '. If no such number exists then the order is infinite.
Ex. $G=\{1,-1, i,-i\}$ is a group w.r.t multiplication.The order $-i$ is
a) 2
b) 3
c) 4
d) 1

Ex. Which of the following is not true.
a) The order of every element of a finite group is finite and is a divisor of the order of the group.
b) The order of an element of a group is same as that of its inverse.
c) In the additive group of integers the order of every element except 0 is infinite
d) In the infinite multiplicative group of nonzero rational numbers the order of every element except 1 is infinite.

Ans. D

3.3 Sub groups

Def. A non empty sub set H of a group $\left(G,{ }^{*}\right)$ is a sub group of G,
if $\left(H,{ }^{*}\right)$ is a group.
Note: For any group $\left\{\mathrm{G},{ }^{*}\right\},\left\{\mathrm{e},^{*}\right\}$ and $\left(\mathrm{G},{ }^{*}\right)$ are trivial sub groups.
Ex. $G=\{1,-1, i,-i\}$ is a group w.r.t multiplication.

$$
\begin{aligned}
& H_{1}=\{1,-1\} \text { is a subgroup of } G . \\
& H_{2}=\{1\} \text { is a trivial subgroup of } G .
\end{aligned}
$$

Ex. $(Z,+)$ and $(Q,+)$ are sub groups of the group $(R+)$.
Theorem: A non empty sub set H of a group $\left(\mathrm{G},{ }^{*}\right)$ is a sub group of G iff
i) $\quad a * b \in H \quad$ " $a, b \in H$
ii) $\quad a^{-1} \in H \quad$ " $a \in H$

Theorem

Theorem: A necessary and sufficient condition for a non empty subset H of a group ($\mathrm{G},{ }^{*}$) to be a sub group is that

$$
a \in H, b \in H \Rightarrow a * b^{-1} \in H .
$$

Proof: Case1: Let $\left(G,{ }^{*}\right)$ be a group and H is a subgroup of G
Let $a, b \in H \quad=b^{-1} \in H \quad$ (since H is is a group)

$$
\Rightarrow a^{*} b^{-1} \in H . \quad(\text { By closure property in } H)
$$

Case2: Let H be a non empty set of a group (G, *).

Now,

$$
\text { Let } \quad a * b^{-1} \in H \quad " a, b \in H
$$

$$
\begin{array}{ll}
a^{*} & a^{-1} \in H \quad \\
\quad \quad \text { (Taking } b=a) \\
\quad=e \in H & \text { i.e., identity exists in } H .
\end{array}
$$

Now, $e \in H, a \in H \quad \Rightarrow e^{*} a^{-1} \in H$

$$
\Rightarrow a^{-1} \in H
$$

\therefore Each element of H has inverse in H .
Further, $a \in H, b \in H \Rightarrow a \in H, b^{-1} \in H$

$$
\begin{aligned}
& \Rightarrow \mathrm{a} *\left(\mathrm{~b}^{-1}\right)^{-1} \in \mathrm{H} . \\
& \Rightarrow \mathrm{a} * \mathrm{~b} \in \mathrm{H} . \quad \therefore \mathrm{H} \text { is closed w.r.t } *
\end{aligned}
$$

Finally, Let $a, b, c \in H$

$$
\begin{aligned}
& \Rightarrow a, b, c \in G(\text { since H ÍG }) \\
& \Rightarrow(a * b) * c=a *(b * c) \\
& \therefore * \text { is associative in } H
\end{aligned}
$$

Hence, H is a subgroup of G .
Theorem: A necessary and sufficient condition for a non empty finite subset H of a group (G ,
*) to be a sub group is that

$$
a * b \in H \text { for all } a, b \in H
$$

Proof: Assignment.
Example: Show that the intersection of two sub groups of a group G is again a sub group of G .

Proof: Let $\left(\mathrm{G},{ }^{*}\right)$ be a group.

Let H_{1} and H_{2} are two sub groups of G .
Let $a, b \in H_{1} \cap H_{2}$.
Now, $a, b \in H_{1} \Rightarrow a * b^{-1} \in H_{1} \quad$ (Since, H_{1} is a subgroup of G)
again, $a, b \in H_{2} \Rightarrow a^{*} b^{-1} \in H_{2} \quad$ (Since, H_{2} is a subgroup of G)
$\therefore \mathrm{a}^{*} \mathrm{~b}^{-1} \in \mathrm{H}_{1} \cap \mathrm{H}_{2}$.
Hence, $H_{1} \cap H_{2}$ is a subgroup of G.
Ex. Show that the union of two sub groups of a group G need not be a sub group of G .

Proof: Let G be an additive group of integers.
Let $H_{1}=\{0, \pm 2, \pm 4, \pm 6, \pm 8, \ldots \ldots\}$
and $H_{2}=\{0, \pm 3, \pm 6, \pm 9, \pm 12, \ldots .$.
Here, H_{1} and H_{2} are groups w.r.t addition.
Further, H_{1} and H_{2} are subsets of G .
$\therefore \mathrm{H}_{1}$ and H_{2} are sub groups of G .
$\mathrm{H}_{1} \cup \mathrm{H}_{2}=\{0, \pm 2, \pm 3, \pm 4, \pm 6, \ldots .$.
Here, $\mathrm{H}_{1} \mathrm{U} \mathrm{H}_{2}$ is not closed w.r.t addition.
For ex. $2,3 \in G$
But, $2+3=5$ and 5 does not belongs to $H_{1} \cup H_{2}$.
Hence, $\mathrm{H}_{1} \cup \mathrm{H}_{2}$ is not a sub group of G .
Homomorphism and Isomorphism.
Homomorphism : Consider the groups ($\mathrm{G},{ }^{*}$) and $\left(\mathrm{G}^{1}, \oplus\right)$
A function $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{1}$ is called a homomorphism if

$$
f(a * b)=f(a) \oplus f(b)
$$

Isomorphism : If a homomorphism $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{1}$ is a bijection then f is called isomorphism between G and G^{1}.

Then we write $G \equiv G^{1}$

Example : Let R be a group of all real numbers under addition and R^{+}be a group of all positive real numbers under multiplication. Show that the mapping $f: R \rightarrow R^{+}$defined by $f(x)=2^{x}$ for all $x \in R$ is an isomorphism.

Solution: First, let us show that f is a homomorphism.
Let $a, b \in R$.
Now, $f(a+b)=2^{a+b}$

$$
\begin{aligned}
& =2^{a} 2^{b} \\
& =f(a) \cdot f(b)
\end{aligned}
$$

$\therefore \mathrm{f}$ is an homomorphism.
Next, let us prove that f is a Bijection.
For any $a, b \in R$, Let, $f(a)=f(b)$

$$
\begin{gathered}
\Rightarrow 2^{a}=2^{b} \\
=>a=b
\end{gathered}
$$

$\therefore \mathrm{f}$ is one.to-one.
Next, take any $c \in R^{+}$.
Then $\log _{2} c \in R$ and $f\left(\log _{2} c\right)=2^{\log 2 c}=c$.
\Rightarrow Every element in R^{+}has a pre image in R .
i.e., f is onto.
$\therefore \mathrm{f}$ is a bijection.
Hence, f is an isomorphism.
Ex. Let R be a group of all real numbers under addition and R^{+}be a group of all positive real numbers under multiplication. Show that the mapping $f: R^{+} \rightarrow R$ defined by $f(x)=\log _{10} x$ for all $x \in R$ is an isomorphism.

Solution: First, let us show that f is a homomorphism.
Let $a, b \in R^{+}$.
Now, $f(a . b)=\log _{10}(a . b)$

$$
\begin{aligned}
& =\log _{10} a+\log _{10} b \\
& =f(a)+f(b)
\end{aligned}
$$

$\therefore \mathrm{f}$ is an homomorphism.

Next, let us prove that f is a Bijection.
For any $a, b \in R^{+}$, Let, $f(a)=f(b)$

$$
\begin{aligned}
& =>\log _{10} a=\log _{10} b \\
& =>a=b
\end{aligned}
$$

$\therefore \mathrm{f}$ is one.to-one.

Next, take any $c \in R$.
Then $10^{c} \in R$ and $f\left(10^{c}\right)=\log _{10} 10^{c}=c$.
\Rightarrow Every element in R has a pre image in R^{+}.
i.e., f is onto.
$\therefore \mathrm{f}$ is a bijection.
Hence, f is an isomorphism.
Theorem: Consider the groups $\left(G_{1},{ }^{*}\right)$ and $\left(G_{2}, \oplus\right)$ with identity elements e_{1} and e_{2} respectively. If $f: G_{1} \rightarrow G_{2}$ is a group homomorphism, then prove that
a) $f\left(e_{1}\right)=e_{2}$
b) $f\left(a^{-1}\right)=[f(a)]^{-1}$
c) If H_{1} is a sub group of G_{1} and $H_{2}=f\left(H_{1}\right)$, then H_{2} is a sub group of G_{2}.
d) If f is an isomorphism from G_{1} onto G_{2}, then f^{-1} is an isomorphism from G_{2} onto G_{1}.

Proof: a) we have in G_{2},

$$
\begin{aligned}
e_{2} \oplus f\left(e_{1}\right) & =f\left(e_{1}\right) & & \left(\text { since, } e_{2} \text { is identity in } G_{2}\right) \\
& =f\left(e_{1} * e_{1}\right) & & \left(\text { since, } e_{1} \text { is identity in } G_{1}\right) \\
& =f\left(e_{1}\right) \oplus f\left(e_{1}\right) & & (\text { since } f \text { is a homomorphism }) \\
e_{2} & =f\left(e_{1}\right) & & (\text { By right cancellation law })
\end{aligned}
$$

b) For any a $\in G_{1}$, we have
$f(a) \oplus f\left(a^{-1}\right)=f\left(a^{*} a^{-1}\right)=f\left(e_{1}\right)=e_{2}$
and $\quad f\left(a^{-1}\right) \oplus f(a)=f\left(a^{-1} * a\right)=f\left(e_{1}\right)=e_{2}$
$\therefore f\left(a^{-1}\right)$ is the inverse of $f(a)$ in G_{2}

$$
\text { i.e., }[f(a)]^{-1}=f\left(a^{-1}\right)
$$

c) $H_{2}=f\left(H_{1}\right)$ is the image of H_{1} under f; this is a subset of G_{2}.

Let $x, y \in H_{2}$.
Then $x=f(a), y=f(b)$ for some $a, b \in H_{1}$
Since, H_{1} is a subgroup of G_{1}, we have a ${ }^{*} b^{-1} \in H_{1}$.
Consequently,
$x \oplus y^{-1}=f(a) \oplus[f(b)]^{-1}$
$=f(a) \oplus f\left(b^{-1}\right)$
$=f\left(a * b^{-1}\right) \in f\left(H_{1}\right)=H_{2}$
Hence, H_{2} is a subgroup of G_{2}.
d) Since $f: G_{1} \rightarrow G_{2}$ is an isomorphism, f is a bijection.
$\therefore \mathrm{f}^{-1}: \mathrm{G}_{2} \rightarrow \mathrm{G}_{1}$ exists and is a bijection.
Let $\mathrm{x}, \mathrm{y} \in \mathrm{G}_{2}$. Then $\mathrm{x} \oplus \mathrm{y} \in \mathrm{G}_{2}$
and there exists $a, b \in G_{1}$ such that $x=f(a)$ and $y=f(b)$.
$\therefore \mathrm{f}^{-1}(\mathrm{x} \oplus \mathrm{y})=\mathrm{f}^{-1}(\mathrm{f}(\mathrm{a}) \oplus \mathrm{f}(\mathrm{b}))$
$=f^{-1}\left(f\left(a^{*} b\right)\right)$
$=a * b$
$=f^{-1}(x) * f^{-1}(y)$
■ This shows that $\mathrm{f}^{-1}: \mathrm{G}_{2} \rightarrow \mathrm{G}_{1}$ is an homomorphism as well.
$\therefore \mathrm{f}^{-1}$ is an isomorphism.

3.3 Cosets

If H is a sub group of $\left(G,{ }^{*}\right)$ and $a \in G$ then the set

$$
H a=\{h * a \mid h \in H\} \text { is called a right coset of } H \text { in } G .
$$

Similarly $a H=\{a * h \mid h \in H\}$ is called a left coset of H is G.
Note:- 1) Any two left (right) cosets of H in G are either identical or disjoint.
2) Let H be a sub group of G. Then the right cosets of H form a partition of G. i.e., the union of all right cosets of a sub group H is equal to G.
3) Lagrange's theorem: The order of each sub group of a finite group is a divisor of the order of the group.
4) The order of every element of a finite group is a divisor of the order of the group.
5) The converse of the lagrange's theorem need not be true.

Ex. If G is a group of order p , where p is a prime number. Then the number of sub groups of G is
a) 1
b) 2
c) $p-1$
d) p

Ans. b
Ex. Prove that every sub group of an abelian group is abelian.
Solution: Let $\left(\mathrm{G},{ }^{*}\right)$ be a group and H is a sub group of G .
Let $\mathrm{a}, \mathrm{b} \in \mathrm{H}$
$\Rightarrow a, b \in G \quad$ (Since H is a subgroup of G)
$\Rightarrow a * b=b * a \quad$ (Since G is an abelian group)
Hence, H is also abelian.

State and prove Lagrange's Theorem

Lagrange's theorem: The order of each sub group H of a finite
group G is a divisor of the order of the group.
Proof: Since G is finite group, H is finite.
Therefore, the number of cosets of H in G is finite.
Let $\mathrm{Ha}_{1}, \mathrm{Ha}_{2}, \ldots, \mathrm{Ha}_{\mathrm{r}}$ be the distinct right cosets of H in G .
Then, $\mathrm{G}=\mathrm{Ha}_{1} \mathrm{UHa}_{2} \mathrm{U} . . ., \mathrm{UHa}_{\mathrm{r}}$
So that $\mathrm{O}(\mathrm{G})=\mathrm{O}\left(\mathrm{Ha}_{1}\right)+\mathrm{O}\left(\mathrm{Ha}_{2}\right) \ldots+\mathrm{O}\left(\mathrm{Ha}_{\mathrm{r}}\right)$.
But, $\mathrm{O}\left(\mathrm{Ha}_{1}\right)=\mathrm{O}\left(\mathrm{Ha}_{2}\right)=\ldots . .=\mathrm{O}\left(\mathrm{Ha}_{\mathrm{r}}\right)=\mathrm{O}(\mathrm{H})$
$\therefore \mathrm{O}(\mathrm{G})=\mathrm{O}(\mathrm{H})+\mathrm{O}(\mathrm{H}) \ldots+\mathrm{O}(\mathrm{H}) .(r$ terms $)$
$=r . O(H)$
This shows that $\mathrm{O}(\mathrm{H})$ divides $\mathrm{O}(\mathrm{G})$.

3.4 Lattices and Boolean algebra: Lattices and Partially Ordered sets, Boolean algebra.

Lattice and its Properties:

Introduction:

A lattice is a partially ordered set (L, f) in which every pair of elements a, b Î L has a greatest lower bound and a least upper bound.
The glb of a subset, $\{a, b\}$ Í L will be denoted by $a * b$ and the lub by a \AA.
Usually, for any pair a, b Î L, GLB $\{\mathrm{a}, \mathrm{b}\}=\mathrm{a} * \mathrm{~b}$, is called the meet or product and $\operatorname{LUB}\{a, b\}=a \AA b$, is called the join or sum of a and b.

Example1 Consider a non-empty set S and let $P(S)$ be its power set. The relation Í

 "contained in" is a partial ordering on $\mathbf{P}(\mathbf{S})$. For any two subsets A , Bî P(S)GLB $\{\mathrm{A}, \mathrm{B}\}$ and $\operatorname{LUB}\{\mathrm{A}, \mathrm{B}\}$ are evidently A Ç B and A È B respectively.
Example2 Let I+ be the set of positive integers, and D denote the relation of "division" in I+ such that for any a, b î l+ , a D b iff a divides b. Then ($1+, \mathrm{D}$) is a lattice in which
the join of a and b is given by the least common multiple(LCM) of a and b, that is,
$a \AA b=$ LCM of a and b, and the meet of a and b, that is, $a * b$ is the greatest common divisor (GCD) of a and b.
A lattice can be conveniently represented by a diagram.
For example, let Sn be the set of all divisors of n , where n is a positive integer. Let D denote the relation "division" such that for any a, b Î Sn, a D b iff a divides b.
Then (Sn, D) is a lattice with $\mathrm{a} * \mathrm{~b}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ and $\mathrm{a} \AA \mathrm{B}=\operatorname{lcm}(\mathrm{a}, \mathrm{b})$.
Take $\mathrm{n}=6$. Then $\mathrm{S} 6=\{1,2,3,6\}$. It can be represented by diagram in
Fig(1). Take $n=8$. Then $S 8=\{1,2,4,8\}$
Two lattices can have the same diagram. For example if $S=\{1,2,3\}$ then $(p(s), I ́)$ and (S6,D)
have the same diagram viz. fig(1), but the nodes are differently labeled. We observe that for any partial ordering relation $£$ on a set S the converse relation ${ }^{3}$ is also partial ordering relation on S. If $(S, £)$ is a lattice With meet $\mathrm{a} * \mathrm{~b}$ and join $\mathrm{a} \AA \mathrm{b}$, then $\left(\mathrm{S},{ }^{3}\right)$ is the also a lattice with meet $\mathrm{a} \AA \mathrm{b}$ and join $\mathrm{a} * \mathrm{~b}$ i.e., the GLB and LUB get interchanged. Thus we have the principle of duality of lattice as follows.

Any statement about lattices involving the operations ${ }^{\wedge}$ and V and the relations $£$ and ${ }^{3}$ remains true if $\wedge, ~ \mathrm{~V},{ }^{3}$ and $£$ are replaced by $\mathrm{V}, \wedge, £$ and ${ }^{3}$ respectively.

The operation ${ }^{\wedge}$ and V are called duals of each other as are the relations $£$ and ${ }^{3}$..
Also, the lattice ($\mathrm{L}, \mathfrak{£}$) and $\left(\mathrm{L},{ }^{3}\right)$ are called the duals of each other.

Properties of lattices:

Let $(\mathrm{L}, £)$ be a lattice with the binary operations * and \AA then for any a, b, c I I L,

- (Associative)
- $\quad \mathrm{a} *(\mathrm{a} \AA \mathrm{b})=\mathrm{a} \quad, \quad \mathrm{a} \AA(\mathrm{a} * \mathrm{~b})=\mathrm{a} \quad$ (absorption)

For any a ÎL, $\mathrm{a} £ \mathrm{a}, \mathrm{a} £ \operatorname{LUB}\{\mathrm{a}, \mathrm{b}\}=>\mathrm{a} £ \mathrm{a} *(\mathrm{a} \AA \mathrm{A})$. On the other hand, GLB $\{\mathrm{a}, \mathrm{a} \AA \mathrm{a}\} £$ a i.e., $(\mathrm{a} \AA \mathrm{B}) \AA \mathrm{A}$, hence $\mathrm{a} *(\mathrm{a} \AA \mathrm{A})=\mathrm{a}$

Theorem 1

Let $(\mathrm{L}, \mathfrak{£})$ be a lattice with the binary operations * and \AA denote the operations of meet and join respectively For any a, bÎL,

$$
\mathrm{a} £ \mathrm{~b} \text { ó } \mathrm{a} * \mathrm{~b}=\mathrm{a} \text { ó } \mathrm{a} \AA \mathrm{~A}=\mathrm{b}
$$

Proof

Suppose that $\mathrm{a} £ \mathrm{~b}$. we know that $\mathrm{a} £ \mathrm{a}, \mathrm{a} £ \operatorname{GLB}\{\mathrm{a}, \mathrm{b}\}$, i.e., $\mathrm{a} £ \mathrm{a}$ *
b. But from the definition of $a * b$, we get $a * b £ a$.

Hence $a £ b=>a * b=a$ \qquad
Now we assume that $\mathrm{a} * \mathrm{~b}=\mathrm{a}$; but is possible only if $\mathrm{a} £ \mathrm{~b}$, that is $\mathrm{a} * \mathrm{~b}=\mathrm{a}=>\mathrm{a} £ \mathrm{~b}$ \qquad
From (1) and (2), we get $\mathrm{a} £ \mathrm{~b}$ ó $\mathrm{a} * \mathrm{~b}=\mathrm{a}$.
Suppose $\mathrm{a} * \mathrm{~b}=\mathrm{a}$.
then $\mathrm{b} \AA(\mathrm{a} * \mathrm{~b})=\mathrm{b} \AA \mathrm{a}=\mathbf{a} \AA \mathbf{b}$
but $\mathrm{b} \AA(\mathrm{a} * \mathrm{~b})=\mathrm{b}$ (by iv)
Hence a $\AA \mathrm{b}=\mathrm{b}$, from (3) $=>$ (4)
Suppose $a \AA b=b$, i.e., $\operatorname{LUB}\{a, b\}=b$, this is possible only if $a f b$, thus $(3)=>$ (1) (1) $=>(2)=>(3)=>(1)$. Hence these are equivalent.

Let us assume $\mathrm{a} * \mathrm{~b}=\mathrm{a}$.
Now $(a * b) \AA b=a \AA b$
We know that by absorption law, $(\mathrm{a} * \mathrm{~b}) \AA \mathrm{b}=\mathrm{b}$
so that $\mathrm{a} \AA \mathrm{b}=\mathrm{b}$, therefore $\mathrm{a} * \mathrm{~b}=\mathrm{aP} \mathrm{a} \AA \mathrm{A}=\mathrm{b}$
similarly, we can prove $\mathrm{a} \AA \mathrm{b}=\mathrm{b} \mathrm{b} \quad \mathrm{a} * \mathrm{~b}=\mathrm{a}$
From (5) and (6), we get
$a * b=a \hat{U} a \AA$ i $=b$
Hence the theorem.
Theorem2 For any a, b, c Î L, where ($\mathrm{L}, £$) is a lattice. b

$$
\begin{array}{r}
£ \mathrm{c}=>\{\mathrm{a} * \mathrm{~b} £ \mathrm{a} * \mathrm{c} \text { and } \\
\{\mathrm{a} \AA \mathrm{~b} £ \mathrm{a} \AA \mathrm{c}
\end{array}
$$

Proof Suppose bec. we have proved that $\mathbf{b} \mathfrak{£} \mathbf{a}$ ób* $\mathbf{c}=\mathbf{b}$ \qquad
Now consider

$$
\begin{aligned}
(a * b) *(a * c) & =(a * a) *(b * c) \quad \text { (by Idempotent) } \\
& =a *(b * c)
\end{aligned}
$$

$$
=a * b
$$

(by (1))

Thus $(a * b) *(a * c)=a * b$ which $=>(a * b) £(a * c)$ Similarly $(\mathrm{a} \AA \mathrm{b}) \AA(\mathrm{a} \AA \mathrm{c})=(\mathrm{a} \AA \mathrm{a}) \AA(\mathrm{b} \AA \mathrm{c})$

$$
\begin{aligned}
& =\mathrm{a} \AA(\mathrm{~b} \AA \mathrm{c}) \\
& =\mathrm{a} \AA \mathrm{c}
\end{aligned}
$$

which => $(\mathrm{a} \AA \mathrm{b}) £(\mathrm{a} \AA \mathrm{c})$
note:These properties are known as isotonicity.

