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5.1  Fundamental Principles of Counting: 

          5.1.1 The rules of Sum and Product 

If X is a set, let us use |X| to denote the number of elements in X. 
Two Basic Counting Principles: 

Two elementary principles act as ͞building blocks͟ for all counting problems. 

 The first principle says that the whole is the sum of its parts. 

Sum Rule:  
 

If a set X is the uŶioŶ of disjoiŶt ŶoŶeŵptǇ suďsets Sϭ, …..,SŶ,  

theŶ | X | = | Sϭ | + | SϮ | + ….. + | Sn |. 

 
We eŵphasize that the suďsets Sϭ, SϮ, ….,SŶ ŵust haǀe Ŷo eleŵeŶts iŶ ĐoŵŵoŶ. 

Moƌeoǀeƌ, siŶĐe X = Sϭ U SϮ U ……U SŶ, eaĐh eleŵeŶt of X is in exactly one of the subsets Si. In other 

ǁoƌds, Sϭ, SϮ, ….,SŶ is a paƌtitioŶ of X. 

If the suďsets Sϭ, SϮ, ….,SŶ ǁeƌe alloǁed to oǀeƌlap, theŶ a ŵoƌe pƌofouŶd pƌiŶĐiple ǁill ďe Ŷeeded the 

principle of inclusion and exclusion. 

The difference is largely in semantics, for if A is an event, we can let X be the set of ways that A 

can happen and count the number of elements in X. Nevertheless, let us state the sum rule for counting 

events. 

If Eϭ, ……, EŶ aƌe ŵutuallǇ eǆĐlusiǀe eǀeŶts, aŶd Eϭ ĐaŶ happeŶ eϭ ǁaǇs, EϮ happeŶ eϮ ǁaǇs,…. 

,EŶ ĐaŶ happeŶ eŶ ǁaǇs, Eϭ oƌ EϮ oƌ …. oƌ EŶ ĐaŶ happeŶ eϭ + eϮ + …….. + eŶ ǁaǇs. 

Again we emphasize that mutually exclusive events E1 and E2 mean that E1 or E2 can happen 

but both cannot happen simultaneously. 



The sum rule can also be formulated in terms of choices: If an object can be selected from a 

reservoir in e1 ways and an object can be selected from a separate reservoir in e2 ways and an object 

can be selected from a separate reservoir in e2 ways, then the selection of one object from either 

one reservoir or the other can be made in e1 + e2 ways. 

Product Rule: 

If Sϭ, …..,SŶ are ŶoŶeŵptǇ sets, theŶ the Ŷuŵďer of eleŵeŶts iŶ the CartesiaŶ produĐt is 

Sϭ ǆ SϮ ǆ ….. ǆSŶ is the produĐt ∏iŶ=ϭ |S i |.  

That is, |1 S1 x S2 x . . . . . . . x Sn|  = ∏iŶ=ϭ| S i |. 
 

Observe that there are 5 branches in the first stage corresponding to the 5 elements of S1 and to 

each of these branches there are 3 branches in the second stage corresponding to the 3 elements of S2 

giving a total of 15 branches altogether. Moreover, the Cartesian product S1 x S2 can be partitioned as 

(a1 x S2) U (a2 x S2) U (a3 x S2) U (a4 x S2) U (a5 x S2), where (ai x S2) 

= {( ai, b1), ( ai, b2), ( ai, b3)}.  

Thus, for example, (a3 x S2) corresponds to the third branch in the first stage followed by each of the 3 

branches in the second stage. 

Moƌe geŶeƌallǇ, if aϭ,….., aŶ aƌe the Ŷ distiŶĐt eleŵeŶts of Sϭ aŶd ďϭ,….,ďŵ aƌe the ŵ distiŶĐt 
elements of S2, then S1 x S2 = Uin  =1 (ai x S2).For if x is an arbitrary element of S1 x S2 , then x = (a, b) 

where a Î S1 and b Î S2.  

Thus, a = ai for some i and b = bj for some j. Thus, x = (ai, bj) Î(ai x S2) and therefore x Î Uni =1(ai x S2). 

Conversely, if x Î Uin =1(ai x S2), then x Î (ai x S2) for some i and thus x = (ai, bj) where bj is some 

element of S2. Therefore, x Î S1 x S2. 

Therefore, The product rule is for two sets. The general rule follows by mathematical induction. 

We ĐaŶ reforŵulate the produĐt rule iŶ terŵs of eǀeŶts. If eǀeŶts Eϭ, EϮ , …., EŶ ĐaŶ 

Happened  in  eϭ, eϮ,…., aŶd eŶ ǁaǇs, respeĐtiǀely, then the sequence of events E1 first, followed by 

EϮ,…., folloǁed ďǇ EŶ ĐaŶ happeŶ eϭeϮ …eŶ ǁaǇs. 

In terms of choices, the product rule is stated thus: If a first object can be chosen e1 ways, a 

seĐoŶd eϮ ǁaǇs , …, aŶd aŶ Ŷth oďjeĐt ĐaŶ ďe ŵade iŶ eϭeϮ….eŶ ǁaǇs. 

5.1.2  Permutations & Combinations: Definition. 

A permutation of n objects taken r at a time (also called an r-permutation of n objects) is an 

ordered selection or arrangement of r of the objects. 

A combination of n objects taken r at a time (called an r-combination of n objects) is an 



unordered selection of r of the objects. 

Note that we are simply defining the terms r-combinations and r-permutations here and 

have not mentioned anything about the properties of the n objects. 

For example, these definitions say nothing about whether or not a given element may appear more 

than once in the list of n objects. 

In other words, it may be that the n objects do not constitute a set in the normal usage of the word. 

SOLVED PROBLEMS 

 

Example1. Suppose that the 5 objects from which selections are to be made are: a, a, a, b, c. then the 
3-combinations of these 5 objects are :aaa, aab, aac, abc. The permutations are: 

aaa, aab, aba, baa, aac, aca, caa, abc, acb, bac, bca, cab, cba. 

Neither do these definitions say anything about any rules governing the selection of the r- 

objects: on one extreme, objects could be chosen where all repetition is forbidden, or on the other 

extreme, each object may be chosen up to t times, or then again may be some rule of selection between 

these extremes; for instance, the rule that would allow a given object to be repeated up to a certain 

specified number of times. 

We will use expressions like {3 . a , 2. b ,5.c} to indicate either 

(1) that we have 3 + 2 + 5 =10 objects including 3a’s , 2b’s and 5c’s, or  

(2) that we have 3 objects a, b, c, where selections are constrained by the conditions that a can be 

selected at most three times, b can be selected at most twice, and c can be chosen up to five times. 

The numbers 3, 2 and 5 in this example will be called repetition numbers. 

Example2 The 3-combinations of {3. a, 2. b, 5.c} are: aaa, aab, 

aac, abb,abc, 
ccc, ccb, cca, cbb. 

Example3. The 3-combinations of {3 . a, 2. b, 2. c , 1.d}are: aaa, aab, 

aac, aad, bba, bbc,bbd, 

cca, ccb, ccd, abc, abd, acd, bcd. 
 

In order to include the case where there is no limit on the number of times an object 
can be repeated in a selection (except that imposed by the size of the selection) we use the symbol 

∞ as a ƌepetitioŶ Ŷuŵďeƌ to ŵeaŶ that aŶ oďjeĐt ĐaŶ oĐĐuƌ aŶ iŶfiŶite Ŷuŵďeƌ of tiŵes. 

Example 4. The 3-ĐoŵďiŶatioŶs of {∞. a, Ϯ.ď, ∞.Đ} are the saŵe as iŶ Eǆaŵple Ϯ eǀeŶ though a and c 
can be repeated an infinite number of times. This is because, in 3-combinations, 3 is the limit on the 
number of objects to be chosen. 



If we are considering seleĐtioŶs ǁhere eaĐh oďjeĐt has ∞ as its repetitioŶ Ŷuŵďer theŶ we 

designate such selections as selections with unlimited repetitions. In particular, as election of r objects 

in this case will be called r-combinations with unlimited repetitions and any ordered arrangement of 

these r objects will be an r-permutation with unlimited repetitions. 

Example5  The combinations of a ,b, c, d with unlimited repetitions are the 3-combinations of 

{∞ . a , ∞. ď, ∞. Đ, ∞. d}. These are ϮϬ suĐh ϯ-combinations, namely: aaa, 
aab, aac, aad, 

bbb, bba, bbc, bbd, 
ccc, cca, ccb, ccd, 
ddd, dda, ddb, ddc, 
abc, abd, acd, bcd. 

Moreover, there are 43 = 64 of 3-permutations with unlimited repetitions since the first position can be 
filled 4 ways (with a, b, c, or d), the second position can be filled 4 ways, and likewise for the third 
position. 

The 2-perŵutatioŶs of {∞. a, ∞. ď, ∞. Đ, ∞. d} do Ŷot preseŶt suĐh a forŵidable list and so 

we tabulate them in the following table. 

 
 2-permutations 

2-combinations with Unlimited Repetitions 

with Unlimited  

Repetitions  

Aa aa 

Ab ab, ba 

Ac ac, ca 

Ad ad, da 

Bb bb 

Bc bc, cb 

Bd bd, db 

Cc cc 

Cd cd, dc 

Dd dd 

10 16 

Of course  these  are  not  the  only  constraints  that  can  be  placed on selections  
 

The possibilities are endless. We list some more examples just for concreteness. We might, for 

example, consider selections of {∞.a, ∞. ď, ∞. Đ} ǁhere ď ĐaŶ ďe ĐhoseŶ oŶlǇ eǀeŶ number of times. 



Thus, 5-combinations with these repetition numbers  & this constraint would be those 5-Combinations 

with unlimited repetitions and where b is chosen 0, 2, or 4 times. 

Example6 The 3-combiŶatioŶs of {∞ .a, ∞ .ď, ϭ .Đ,ϭ .d} ǁhere ď ĐaŶ ďe ĐhoseŶ oŶlǇ aŶ eǀeŶ number of 

times are the 3-combinations of a, b, c, d where a can be chosen up 3 times, b can be chosen 0 or 2 

times, and c and d can be chosen at most once. The 3-cimbinations subject to these constraints are: 

aaa, aac, aad, bbc, bbd, acd. 
 

As aŶother eǆaŵple, ǁe ŵight ďe iŶterested iŶ, seleĐtioŶs of {∞.a, ϯ.ď, ϭ.Đ} ǁhere a ĐaŶ be 

chosen a prime number of times. Thus, the 8-combinations subject to these constraints would be all 

those 8-combinations where a can be chosen 2, 3, 5, or 7 times, b can chosen up to 3 times, 

and c can be chosen at most once. 

There are, as we have said, an infinite variety of constraints one could place on selections. 

You can just let your imagination go free in conjuring up different constraints on the selection, 

would constitute an r-combination according to our definition. Moreover, any arrangement of 

these r objects would constitute an r-permutation. 

While there may be an infinite variety of constraints, we are primarily interested in two major 

types: one we have already described—combinations and permutations with unlimited repetitions, 

the other we now describe. 

If the repetition numbers are all 1, then selections of r objects are called r-combinations 

without repetitions and arrangements of the r objects are r-permutations without repetitions. 

We remind you that r-combinations without repetitions are just subsets of the n elements containing 

exactly r elements. Moreover, we shall often drop the repetition number 1 when considering r-

combinations without repetitions. For example, when considering r-combinations of {a, b, c, d} we will 

mean that each repetition number is 1 unless otherwise designated, and, of course, we mean that in a 

given selection an element need not be chosen at all, but, if it is chosen, then in this selection this 

element cannot be chosen again. 

Example7. Suppose selections are to be made from the four objects a, b, c,d. 
 

2-combinations 2-Permutations 

withoutRepetitions withoutRepetitions 

ab  ab,ba 

ac ac, ca 



ad ad, da 

bc bc, cb 

bd bd, db 

cd cd, dc 

6 12 

 
 

There are six 2-combinations without repetitions and to each there are two 2-

permutations giving a total of twelve 2-permutations without repetitions. 

Note that total number of 2-combinations with unlimited repetitions in Example 5 

included six 2-combinations without repetitions of Example.7 and as well 4 other 2- 

combinations where repetitions actually occur. Likewise, the sixteen 2-permutations with 

unlimited repetitions included the twelve 2-permutations without repetitions.

 
3-combinations without Repetitions abc abd  acd bcd are 4  

3-Permutations without Repetitions 

abc, acb, bac, bca, cab, cbaabd, adb, bad, bda, dab, dbaacd, adc, cad, cda, dac, dcabcd, bdc, cbd, 
cdb, dbc, dcb are 24 

 

Note that to each of the 3-combinations without repetitions there are 6 possible 3- permutations 

without repetitions. Momentarily, we will show that this observation can be generalized. 



5.1.4  Combinations and Permutations with Repetitions: 

General formulas for enumerating combinations and permutations will now be presented. At this 

time, we will only list formulas for combinations and permutations without repetitions or with unlimited 

repetitions. We will wait until later to use generating functions to give general techniques for 

enumerating combinations where other rules govern the selections. 

Let P (n, r) denote the number of r-permutations of n elements without repetitions. 
 

Theorem 5.3.1.( Enumerating  r-permutations without repetitions). 

P(n, r) = n(n-ϭͿ……. ;Ŷ – r + 1) = n! / (n-r)! 

Proof. Since there are n distinct objects, the first position of an r-permutation may be filled in n ways. 

This done, the second position can be filled in n-1 ways since no repetitions are allowed and there are n 

– 1 objects left to choose from. The third can be filled in n-2 ways. By applying the product rule, we 

conduct that  

P (n, r) = n(n-1)(n-ϮͿ……. ;Ŷ – r + 1). From the definition of factorials, it follows that 

P (n, r) = n! / (n-r)! 

When r = n, this formula becomes 

P (n, n) =  n! / 0! = n! 

When we explicit reference to r is not made, we assume that all the objects are to be arranged; 

thus we talk about the permutations of n objects we mean the case r=n. 

Corollary1. There are n! permutations of n distinct objects. 

Example1. There are 3! =  6 permutations of {a, b,c}. 

There are 4! =  24 permutations of (a, b, c, d). The number of 2-permutations 

{a, b, c, d, e} is P(5, 2) = 5! / (5 - 2)! = 5 x 4 = 20. The number of 5-letter words using the letters a, b, c, d, 

and e at most once is P (5, 5) = 120. 

Example 2 There are P (10, 4) = 5,040 4-digit numbers that contain no repeated digits since each 

such number is just aŶ arraŶgeŵeŶt of four of the digits Ϭ, ϭ, Ϯ, ϯ , …., 9 ;leadiŶg zeroes are 

allowed). There are P (26, 3) P(10, 4) license plates formed by 3 distinct letters followed by 4 distinct 

digits. 

Example3. In how many ways can 7 women and 3 men be arranged in a row if the 3 men must 

always stand next to each other? 

 



. 

Solution : 

There are 3! ways of arranging the 3 men. Since the 3 men always stand next to each other, we 

treat them as a single entity, which we denote by X.  

TheŶ if Wϭ, WϮ, ….., W7 represents the women, we next are interested in the number of ways 

of aƌƌaŶgiŶg {X, Wϭ, WϮ, Wϯ,……., Wϳ}. Theƌe aƌe ϴ! PeƌŵutatioŶs these ϴ oďjeĐts. HeŶĐe theƌe aƌe 

(3!) (8!) permutations altogether.  

Example4.In how many ways can the letters of the English alphabet be arranged so that there are 

exactly 5 letters between the letters a and b? 

There are P (24, 5) ways to arrange the 5 letters between a and b, 2 ways to place a and b, and 
then 20! ways to arrange any 7-letter word treated as one unit along with the remaining 19 letters. The 
total is P (24, 5) (20!) (2). 

Permutations for the objects are being arranged in a line. If instead of arranging objects in a line, we 
arrange them in a circle, then the number of permutations decreases. 

 
Example5.In how many ways can 5 children arrange themselves in a ring? 

Solution: Here, the 5 children are not assigned to particular places but are only arranged relative to 

one another. Thus, the arrangements (see Figure 2-3) are considered the same if the children are in 

the same order clockwise. Hence, the position of child C1 is immaterial and it is only the position of the 

4 other children relative to C1 that counts. Therefore, keeping C1 fixed in position, there are 4! 

arrangements of the remaining children. 

Binomial Coefficients: 

In mathematics, the binomial coefficient is the coefficient of the x
k
term in the polynomial 

expansion of the binomial power (1 + x) 
n . 

In combinatorics , is interpreted as the number of k-

element subsets (the k-combinations) of an n-element set, that is the number of ways that k things can be 

"chosen" from a set of n things. 

Hence,      is often read as "n  choose k" and is called the choose  function  of n  and k. The 

notation was introduced by Andreas von Ettingshausenin 182, although the numbers were already 

known centuries before that (see Pascal's triangle). Alternative notations include C(n, k), nCk,
n

Ck,, in all 

of which the C stands for combinations or choices. 

For natural numbers (takentoinclude0)n and k, the binomial coefficient can be defined as 



 

X 

ax 

x y 

the coefficient of the monomial X
k 

in the expansion of (1 + X)
n

. The same coefficient also occurs 

(ifk ≤ n) in the binomial formula 
 

 

(valid for any elements  x, y of a commutative ring), which explains the name "binomial coefficient". 
 

Another occurrence of this number is in combinatorics, where it gives the number of ways, disregarding 
order, that a k objects can be chosen from among n objects; more formally, the number of k-element 
subsets (or k-combinations) of an n-element set. This number can be seen to be equal to the one of the 
first definition, independently of any of the formulas below to compute it: if in each of the n factors of 

the power (1 + X)
n 

one temporarily labels the term X with an index i (running from 1 to    n), then each 
subset of k indices gives after expansion a contribution k , and the coefficient of that monomial in the 

result will be the number of such subsets. This shows in particular that is a natural number for any 
natural numbers n and k. There are many other combinatorial interpretations of binomial coefficients 
(counting problems for which the answer is given by a binomial coefficient expression), for instance the 
number of words formed of n bits (digits 0 or 1) whose sum is k, but most of these are easily seen to be 

equivalent to counting k-combinations. Several methods exist to compute the value of without 
actually expanding a binomial power or counting k-combinations. 

5.3.1.2 Binomial  & Multinomial theorems: 

Binomial theorem: 

In elementary algebra, the binomial theorem describes the algebraic expansion of powers  of a binomial. 

According to the theorem, it is possible to expand the power (x + y)
n

into a sum involving terms of the 

form 
b  c

, where the coefficient of each term is a positive integer,   and y the sum of the exponents of x 
and y in each term is n. For example, 

 
 

The coefficients appearing in the binomial expansion are known as binomial coefficients. They are  
the  same  as the  entries of Pascal's triangle,  and  can  be  determined  by a  simple  formula involving 
factorials. These numbers also arise in combinatorics, where the coefficient of   x,y 

 
is equal to the 

number of different combinations of k elements that can be chosen from an n- element set. 
According to the theorem, it is possible to expand any power of x + y into a sum of  the form as 

 
 
 
 
 
 
 

where denotes the corresponding binomial coefficient. Using summation 

notation, the formula above can be written 

 
 



This formula is sometimes referred to as the Binomial Formula or the Binomial Identity. 

A variant of the binomial formula is obtained by substituting 1 for x and x for y, so that it involves 
only a single variable. In this form, the formula reads 

 

 
or equivalently 

 

 

Multinomial theorem: 

 

In mathematics, the multinomial theorem says how to write a power of a sum in terms of 
powers of the terms in that sum. It is the generalization of the binomial theorem to polynomials. 
For any positive integer m and any nonnegative integer n, the multinomial formula tells us how a 
polynomial expands when raised to an arbitrary power: 

The summation is taken over all sequences of nonnegative integer indices k1 through km such the sum of 

all ki is n. That is, for each term in the expansion, the exponents must add up to n. 
0 

Also, as with the binomial theorem, quantities of the form x   that appear are taken to equal 1 
(even when x equals zero). Alternatively, this can be written concisely using multi indices as 

 
 

α α α α 

 

 

ǁhere α = ;α1,α2,…,αm) and x elements. 

 

 

 

 

 

 

 

 

 

 



5.2.1 The principle of Inclusion and Exclusion 

Let us Consider C1 , C2  are the 2 conditions on two sets can be represented by 

 

 The above equation can be represented by Venn diagram as shown below, where 

 

  

For 3 sets and 3 Conditions can be represented By 

 

 

Four sets it can be represented by  

 

 

For each element x, we have five cases:  

(0) x satisfies none of the four conditions;  

(1) x satisfies only one of the four conditions;  

(2) x satisfies exactly two of the four conditions;  

(3) x satisfies exactly three of the four conditions; 

 (4) x satisfies all the four conditions. 

1. Say x satisfies no condition. x is counted once on the left side and once on the right side. 

2. Say x satisfies c1. It is not counted on the left side. It is counted once in N and once in N(c1). 

3. Say x satisfies c2 and c4. It is not counted on the left side. It is counted once in N, N(c2), N(c4) and 

N(c2c4). 

4. Say x satisfies c1, c2 and c4. It is not counted on the left side. It is counted once in N, N(c1), N(c2), 

N(c4), N(c1c2), N(c1c4), N(c2c4) and N(c1c2c4). 

)]()()([) ( 212121 ccNcNcNNccN 

)()( 2121 ccNccN 

)()]()()([

)]()()([)  (

321323121

321321

cccNccNccNccN

cNcNcNNcccN




)()]()()()([

)]()()()()()([

)]()()()([)   (

4321432431421321

434232413121

43214321

ccccNcccNcccNcccNcccN

ccNccNccNccNccNccN

cNcNcNcNNccccN








5. Say x satisfies all conditions. It is not counted on the left side. It is counted once in all the subsets 

on the right side. 

                             =  

 

Example:  

Determine the number of positive integer’s n where n100 and n is not divisible by 2, 3 or 5.  

1. Condition c1 if n is divisible by 2. 

2. Condition c2 if n is divisible by 3. 

3. Condition c3 if n is divisible by 5. 

4. Then the answer to this problem is  

                                   

 

                          = 100-[ 50+33+20] =[16+10+6]-3 =26 

Problem 2: 

Determine the number of nonnegative integer solutions to the equation x1+x2+x3+x4=18 and xi7 

for all i. We say that a solution x1, x2, x3, x4 satisfies condition ci if xi>7. 

Then the answer to this problem is 

  

          Theorem:  
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The Above Equation can be represented by using SK 

 

5.2 Generalizations of the principle 

 

Consider a set S  with |s| = N and conditions satisfy some of the elements of S 

If m belongs to S then 

Em denotes the number of elements in S that satisfy exactly m of the t conditions. 

E1=N(c1)+N(c2)+N(c3)-2[N(c1c2)+ N(c1c3)+ N(c2c3)]+3N(c1c2c3)   =S1-2S2+3S3 

          =S1-C(2,1)S2+C(3, 2)S3 

E2=N(c1c2)+N(c1c3)+N(c2c3)-3N(c1c2c3) 

       =S2-3S3=S2-C(3, 1)S3 

E3=S3  

No of conditions =4 it can be represented by 



E1=S1-C(2,1)S2+  C(3, 2)S3-C(4, 3)S4 

E2=S2-C(3,1)S3+  C(4, 2)S4 

E3=S3-C(4,1)S4 

E4=S4 

Theorem : For each 1<=m<=t , the number of elements in S that exactly given m of the 

conditions c1 ,c2, c3, …. C t  is give by 

 

Let Lm denotes the number of elements in S that satisfy at least m of the t conditions. 

 

Pigeon hole principles and its application: 

 
The statement of the Pigeonhole Principle: 

If m pigeons are put into m pigeonholes, there is an empty hole if there's a hole with more than one 

pigeon. If n > m pigeons are put into m pigeonholes, there's a hole with more than one pigeon. 

Example: 

 

Consider a chess board with two of the diagonally opposite corners removed. Is it possible to cover the 
board with pieces of domino whose size is exactly two board squares? 

 
Solution 

 

No, it's not possible. Two diagonally opposite squares on a chess board are of the same color. 
Therefore, when these are removed, the number of squares of one color exceeds by 2 the number of 
squares of another color. However, every piece of domino covers exactly two squares and these are of 
different colors. Every placement of domino pieces establishes a 1-1 correspondence between the set of 
white squares and the set of black squares. If the two sets have different number of elements, then, by 
the Pigeonhole Principle, no 1-1 correspondence between the two sets is possible. 



Generalizations of the pigeonhole principle 

 

A generalized version of this principle states that, if n discrete objects are to be allocated to m 

containers, then at least one container must hold no fewer than objects, where is the 
ceiling function, denoting the smallest integer larger than or equal to x. Similarly, at least one 

container must hold no more than objects, where is the floor function, denoting the 
largest integer smaller than or equal to x. 

A probabilistic generalization of the pigeonhole principle states that if n pigeons are randomly 
put into m pigeonholes with uniform probability 1/m, then at least one pigeonhole will hold more 
than one pigeon with probability 

 

 
where (m)n is the falling factorial m(m − ϭͿ;m − ϮͿ...;m − n + 1). For n = 0 and for n = 1 (and m > 

0), that probability is zero; in other words, if there is just one pigeon, there cannot be a conflict. For n 

>m (more pigeons than pigeonholes) it is one, in which case it coincides with the ordinary pigeonhole 
principle. But even if the number of pigeons does not exceed the number of pigeonholes (n ≤ m), due 
to the random nature of the assignment of pigeons to pigeonholes there is often a substantial chance 
that clashes will occur. For example, if 2 pigeons are randomly assigned to 4 pigeonholes, there is a 
25% chance that at least one pigeonhole will hold more than one pigeon; for 5 pigeons and 10 holes, 
that probability is 69.76%; and for 10 pigeons and 20 holes it is about 93.45%. If the number of holes 
stays fixed, there is always a greater probability of a pair when you add more pigeons. This problem is 
treated at much greater length at birthday paradox. 

 

A further probabilistic generalization is that when a real-valued random variable X has a finite 
mean E(X), then the probability is nonzero that X is greater than or equal to E(X), and similarly the 
probability is nonzero that X is less than or equal to E(X). To see that this implies the  standard 
pigeonhole principle, take any fixed arrangement of n pigeons into m holes and let X be the number of 
pigeons in a hole chosen uniformly at random. The mean of X is n/m, so if there are more pigeons than 
holes the mean is greater than one. Therefore, X is sometimes at least2. 

 
Applications: 

The pigeonhole principle arises in computer science. For example, collisions are inevitable in a 
hash table because the number of possible keys exceeds the number of indices in the array. No 
hashing algorithm, no matter how clever, can avoid these collisions. This principle also proves that any 
general-purpose lossless compression algorithm that makes at least one input file smaller will make 
some other input file larger. (Otherwise, two files would be compressed to the same smaller file and 
restoring them would be ambiguous.) 

 

 

 

 

 



5.2.3 Derangements: nothing is in its right place 

Derangement means that all numbers are in the wrong positions.  

e-1=1-1+(1/2!)-(1/3!)+(1/4!)-;ϭ/ϱ!Ϳ+….. =Ϭ.ϯϲϳϴϴ 

 

 Problem : DeteƌŵiŶe the Ŷuŵďeƌ of deƌaŶgeŵeŶts of ϭ,Ϯ,…, ϭϬ.  

Let ci be the condition that integer i is in the i-th position. d10 can be computed as 

follows. 

 

The general formula for the Derangements can be represented by 

 

 

=>  

Problem : We have seven books and seven reviewers. Each book needs to be reviewed by two 

persons. How many ways can we assign the referees? 

1. The first week has 7! ways to assign referees. 

2. The second week has d7 ways to assign referees. 

3. Totally, we have 7!d7 ways of possible assignments. 

5.2.4 Rook Polynomials 

A piece in chess board is called as rook or Castle. No two numbers are in the same order 

is called as rk  or rk ( c )  where C is called as Chessboard 

 

In Figure below, we want to determine the number of ways in which k rooks can 

be placed on the unshaded squares of this chessboard so that no two of them can take 

each other—that is, no two of them are in the same row or column of the chessboard. 

This number is denoted as rk(C). 
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In Fig , we have r0=1, r1=6, r2=8, r3=2 and rk=0 for k4. 

r(C, x)=1+6x+8x2+2x3. For each k0, the coefficient of xk is the number of ways we can 

place k nontaking rooks on chessboard C. 

Disjoint subboards : 

In below  Figure  the chessboard contains two disjoint subboards that have no squares 

in the same column or row of C. 

r(C, x)=r(C1, x). r(C2, x). 

 

 

5.2.5 Arrangements with forbidden positions: 

Below fig shows a seating arrangement of seating to 4 persons in 5 tables in forbidden places. 

The shaded square of RiTj means Ri will not sit at Tj.  

Problems : Determine the number of ways that we can seat these four relatives on un-shaded 

squares. 

Let S be the total number of ways we can place these four relatives, one to a table. 



Let ci be the condition that Ri is seated in a forbidden position but at different tables. 

 T1  T2  T3  T4  T5  

R1       

R2       

R3       

R4       

 

Let ri be the number of ways in which it is possible to place i nontaking rooks on the shaded 

chessboard. For all 0i4, Si=ri(5-i)! 

R(C, x)= (1+3x+x2)(1+4x+3x2) 

                         =1+7x+16x2+13x3+3x4 

 

 

 

 

 

Problem : We roll two dice six times, where one is red die and the other green die. 

We know the following pairs did not occur: (1, 2), (2, 1), (2, 5), (3, 4), (4, 1), (4, 5) and (6, 6). 

What is the probability that we obtain all six values both on red die and green die? 

One of solutions is like (1, 1), (2, 3), (4, 4), (3, 2), (5, 6), (6, 5). 

r(C, x)=(1+4x+2x2)(1+x)3=1+7x+17x2+19x3+10x4+2x5,   Where ci denotes that all six values occur 

on both the red and green dies, but i on the red die is paired with one of the forbidden 

numbers on the green die. These are represented in below fig’s. 
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5.3 Generating Functions 

5.3.1  Introductory Examples 

Problem 1:  12 oranges for three children, Grace, Mary, and Frank. 

Grace gets at least four, and Mary and Frank gets at least two, but Frank gets no more 

than five.  (x4+ x5+ x6+ x7+ x8) (x2+ x3+x4+ x5+ x6)(x2+ x3+x4+ x5) Then The coefficient of the 

Problem is x12 

Problem 2 : 12 oranges for three children, Grace, Mary, and Frank. 

Grace gets at least four, and Mary and Frank gets at least two, but Frank gets no more than five.     

(x4+ x5+ x6+ x7+ x8) (x2+ x3+x4+ x5+ x6)(x2+ x3+x4+ x5) 

The coefficient of x12 is the solution. 

Problem 3 : How many nonnegative integer solutions are there for c1+c2+c3+c4=25?  

f(x)=(1+ x1+ x2+….+ ǆ24+ x25)4 , The coefficient of x25 is the solution. 

5.3.2   Definition and examples: Calculational Techniques   

 

Problem :  (1+x)n is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe C;Ŷ, ϬͿ, C;Ŷ, ϭͿ,…, C;Ŷ, ŶͿ, Ϭ,Ϭ,Ϭ…  

(1-xn+1)/(1-ǆͿ is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe ϭ,ϭ,ϭ,…,ϭ, Ϭ, Ϭ,Ϭ…, ǁheƌe the fiƌst Ŷ+ϭ 
terms are 1. 

Examples  : 1/(1-ǆͿ is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe ϭ,ϭ,ϭ,…,ϭ,…. 

1/(1-x)2 is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe ϭ,Ϯ,ϯ,ϰ,…. 

x/(1-x)2 is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe Ϭ,ϭ,Ϯ,ϯ,…. 

(x+1)/(1-x)3 is the generating function for the sequence 12,22,32,42,…. 

x(x+1)/(1-x)3 is the generating function for the sequence 02,12,22,32,42,…. 

The above can be represented by 



 

Problem  2 : 1/(1-ax) is the generating function for the sequence a0,a1,a2,a3,…. 

Let f(x)=1/(1-x). Then g(x)=f(x)-x2 is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe ϭ,ϭ,Ϭ, ϭ, ϭ,…,…. 

Let ai=i2+i for i0. Then its generating function is [x(x+1)/(1-x)3]+[x/(1-x)2]=2x/(1-x)3 

Define C(n, r) for nR :  

Since when nZ
+
, we have 

 

So for n R we define  
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For example, if n is positive, we have 

 

 

 

 

 

5.3.3  Partition of integers 

p(x) is the number of partitions for x.  

For n, the number of 1’s is 0 or 1 or 2 oƌ ϯ…. The poǁeƌ seƌies is ϭ+ǆ+ǆ2+x3+x4+…. 

For n, the number of 2’s can be kept tracked by the power series 1+x2+x4+x6+x8+…. 

For n, the number of 3’s can be kept tracked by the power series 1+x3+x6+x9+x12+…. 

f(x)=(1+x+x2+x3+x4+…Ϳ;ϭ+ǆ2+x4+x6+x8+x10+…Ϳ ;ϭ+ǆ3+x6+x9+…) … (1+x10+…Ϳ 

               =1/(1-x)1/(1-x2) 1/(1-x3) … 1/(1-x10) 

At last, we have the following series for p(n) by the coefficient of xn  

 

Problem : Find the number of ways an advertising agent can purchase n minutes if the time 

slots come in blocks of 30, 60, 120 seconds. 

Let 30 seconds represent one time unit. 

a+2b+4c=2n 

f(x)= (1+x+x2+x3+x4+…Ϳ ;ϭ+ǆ2+x4+x6+x8+…Ϳ; ϭ+ǆ4+x8+x12+…Ϳ 

    =1/(1-x)  1/(1-x2)  1/(1-x4). 

The coefficient of x2n is the answer to the problem. 

Problem : 
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 pd(n) is the number of partitions of a positive integer n into distinct summands. 

Pd(x)=(1+x)(1+x2)(1+x3Ϳ..…  

Problem : 

 po(n) is the number of partitions of a positive integer n into odd summands. 

Po(x)= (1+x+x2+x3+x4+…Ϳ ;ϭ+ǆ3+x6+x9+x12+…Ϳ; ϭ+ǆ5+x10+x15+…Ϳ…  

Po(x)=1/(1-x)  1/(1-x3)  1/(1-x5)  1/(1-x7)  ... 

Pd(x)= Po(x) 

Problem  

poo(n) is the number of partitions of a positive integer n into odd summands and 

such summands must occur an odd number of times. 

Poo(x)= (1+x+x3+x5+x7+…Ϳ ;ϭ+ǆ3+x9+x15+…Ϳ; ϭ+ǆ5+x15+x25+…Ϳ…  

5.3.4 The exponential generating function: 

 
 

 
 

 

 



Problem: 

In how many ways can four of the letters in ENGINE be arranged? 

f(x)=[1+x+(x2/2!)]2[1+x]2, and the answer is the coefficient of x4/4!. 

 

 
 

Important Series: 

 

    

 

 

 
 

 

Problem :  

We have 48 flags, 12 each of the colors red, white, blue and black. Twelve flags are 

placed on a vertical pole to show signal. 

How many of these use an even number of blue flags and an odd number of black flags? 

 

 



Solution: 

 
Then  

 
 

5.3.5 The Summation Operator: 

Let f(x)=a0+a1x+a2x2+a3x3+….  TheŶ f;ǆͿ/;ϭ-x) generate the sequence of a0, a0+a1, a0+a1+a2, 

a0+a1+a2+a3,…  

So we refer to 1/(1-x) as the summation operator. 

 

 

Problem: 

1/(1-ǆͿ is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe ϭ, ϭ, ϭ, ϭ, ϭ,…  
[1/(1-x)] [1/(1-ǆͿ] is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe ϭ,Ϯ,ϯ,ϰ,ϱ,…  
x+x2 is the generating function for the sequence 0, 1, 1, 0, 0, Ϭ,…  
(x+x2) /(1-ǆͿ is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe Ϭ, ϭ, Ϯ, Ϯ, Ϯ, Ϯ, …  
(x+x2) /(1-x)2 is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe Ϭ, ϭ, ϯ, ϱ, ϳ, ϵ, ϭϭ, …  
(x+x2) /(1-x)3 is the geŶeƌatiŶg fuŶĐtioŶ foƌ the seƋueŶĐe Ϭ, ϭ, ϰ, ϵ, ϭϲ, Ϯϱ, ϯϲ, …  

 

 



 

Problem: 

g(x)= 1/(1-x)=1+x+x2+x3+x4+…  

q(x)=dg(x)/dx=1/(1-x)2=1+2x+3x2+4x3+.…  

r(x)=xq(x)=x/(1-x)2 = x+2x2+3x3+4x4+.…  

xdr(x)/dx=(1+x)/(1-x)3= x+22x2+32x3+42x4+. 

x(1+x)/(1-x)4 = x+(12+22)x2+(12+22+32)x3+(12+22+32+42)x4+.…  
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