

G.PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY (AT), KURNOOL II.B.Tech - I Semester II MID Examinations

Branch: EEE

Subject: CONTROL SYSTES ENGINE ERING (15A02303)

Date: 09-11-2017 Time: 11/2 Hrs. Max Marks: 30

Sl.No	Question	Marks	Unit	СО	Cognitive Level
1.i)	What is the relation between dominant roots and settling time?	2	3	C210.3	Understand
1.ii)	Give the pictorial representation of poles for unstable, limitedly stable and stable systems.	2	3	C210.3	Apply
1.iii)	What are the advantages of lead-lag compensator?	2	4	C210.5	Understand
1.iv)	Define Nyquist stability criterion.	2	4	C210.4	Understand
1.v)	Define state and state variables.	2	5	C210.6	Remember
2a)	The characteristic equation of a control system is given by $s^4+20Ks^3+5s^2+(10+K)s+15=0$. Determine the range of values of K for the system to be stable.	5	3	C210.3	Apply
2b)	A certain unity negative feedback system has the open loop transfer function $G(s) = \frac{K(s+1)}{s(s-1)(s+6)}$. Find the value of K which makes the closed loop system lose stability. What are the locations of unstable poles in the s-plane for this value of K?	5	3	C210.3	Apply
3a)	Explain the rules to construct Root Locus.	10	3	C210.3	Remember
3b)	Draw the bode plot and determine gain margin and phase margin for $G(s)H(s)=\frac{e^{03s}}{s(s+1)}$.	10	4	C210.4	Understand
4)	Explain in detail about Nyquist stability criterion.	10	4	C210.4	Remember
5a)	Obtain the canonical form and state model of a system described by a differential equation $\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = 8\ddot{u} + 17\dot{u} + 8u \text{ ; Where } y \text{ is output and } u \text{ is input.}$	5	5	C210.6	Apply
5b)	Obtain the state model of an electrical network shown below	5	5	C210.6	Analyze

G.PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY (AT), KURNOOL

II.B.Tech - I Semester II MID Examinations Branch: EEE

Subject: CONTROL SYSTES ENGINEERING (15A02303)

Date: 09-11-2017

Time: 1½ Hrs. Max Marks: 30

Sl.N	Question 1 is compulsory. Answer one from 2 or Question	Marks	Unit	CO	Cognitive
0					Level
1.i)	Define relative stability.	2	3	C210.3	Understand
1.ii)	Find the value of K and frequency of oscillations, if a system with CE $s^2+(2K-1)s+1=0$ will sustain oscillations.	2	3	C210.3	Apply
1.iii)	What is the relation between Phase margin and gain cross over frequency?	2	4	C210.4	Understand
1.iv)	Define corner frequency. For poles or zeros at origin, the corner frequency exists or not? Why?	2	4	C210.4	Understand
1.v)	State any two properties of STM.	2	5	C210.6	Understand
2a)	How many roots of a characteristic polynomial of a system s ⁴ -s ² -2s+2 have positive real parts?	5	3	C210.3	Understand
2b)	Determine the value K for which the characteristic polynomial of a system s ⁴ +8s ³ +24s ² +32s+K has roots with zero real part.	5	3	C210.3	Understand
3a)	Consider a feedback system with characteristic equation $1 + \frac{k}{s(s+1)(s+2)} = 0$. Sketch the root locus when open loop gain is varied from 0 to ∞ .	5	3	C210.3	Apply
3b)	Draw the bode plot and determine gain margin and phase margin of a system whose open loop transfer function is given by $G(s) = \frac{100}{s(s+1)(s+2)}$.	5	4	C210.4	Understand
4	The open loop transfer function of a unity feedback system is given by $G(s)H(s)=\frac{(s+2)}{(s+1)(s-1)}$. Draw the Nyquist plot and determine stability of the closed loop system.	10	4	C210.4	Apply
5	Consider a control system with state model $ \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} [\mathbf{u}] \; ; \; \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \; ; \; \text{Compute the} $ STM and system response $x(t)$.	10	5	C210.6	Analyze

G.PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY (AT), KURNOOL

II.B.Tech - I Semester II MID Examinations Branch: EEE

Subject: CONTROL SYSTES ENGINEERING (15A02303) Date: 09-11-2017

Time: 1½ Hrs. Max Marks: 30

CLAT	Question 1 is compulsory. Answer one from 2 or 3 and one from 4 or 5					
Sl.N o	Question	Mark s	Uni t	CO	Cognitive Level	
1.i)	What is the effect of adding zeros to G(s)H(s) on root locus?	2	3	C210.3	Apply	
1.ii)	The OLTF of a UFB system is given by $G(s) = \frac{Ks(s+2)}{(s-2)(s-3)}$. How	2	3	C210.3	Understand	
1.iii)	many root locus branches are there? Define bandwidth and cut-off rate.		_	C210.4		
1.111)	Define bandwidth and eat off face.	2	4	C210.4	Remember	
1.iv)	What is the relation between Gain margin and phase cross over frequency?	2	4	C210.4	Understand	
1.v)	Derive the relation between diagonal matrix, diagonalizing matrix for a state matrix A.	2	5	C210.6	Apply	
2a)	The open loop transfer function of a unity feedback system is given by $G(s)H(s) = \frac{Ke^{-s}}{s(s^2+5s+9)}$. Determine the value of K for the system to be stable.	5	3	C210.3	Understand	
2b)	Determine the value of K(K>0) such that the characteristic equation $s^3+3(K+1)s^2+(7K+5)s+(4K+7)=0$ has roots more negative than s=-1.	5	3	C210.3	Analyze	
3)	Derive the expressions for resonant frequency, resonant peak and bandwidth of a second order system.	10	4	C210.4	Remember	
4)	The open loop transfer function of a unity feedback system is given by $G(s) = \frac{(4s+1)}{s^2(s+1)(2s+1)}$. Draw the Nyquist plot and determine stability of the closed loop system.	10	4	C210.4	Apply	
5a)	Consider a system with state model given by $ \begin{bmatrix} \dot{x1} \\ \dot{x2} \\ \dot{x3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} u \text{ and} $ $ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} ; \text{ Check whether the system is completely state controllable or not.} $	5	5	C210.6	Understand	
5b)	Examine the observability of a system represented by $ \begin{bmatrix} \dot{x}1\\ \dot{x}2\\ \dot{x}3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x1\\ x2\\ x3 \end{bmatrix} \text{ and } y = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} x1\\ x2\\ x3 \end{bmatrix} $	5	5	C210.6	Apply	

GPCET

G.PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY (AT), KURNOOL

II.B.Tech - I Semester II MID Examinations Branch: EEE

Subject: CONTROL SYSTES ENGINEERING (15A02303)

Date: 09-11-2017

Time: 1½ Hrs. Max Marks: 30

Sl.N o	Question	Marks	Uni t	СО	Cognitive Level
1.i)	The OLTF of a UFB system is given by $G(s) = \frac{K(s+2)}{(s+1)(s-1)}$. How many root loci will terminate on infinity?	2	3	C210.3	Apply
1.ii)	What is the effect of adding poles to G(s)H(s) on root locus?	2	3	C210.3	Remember
1.iii)	Define resonant peak and resonant frequency.	2	4	C210.4	Understand
1.iv)	What are the advantages of frequency response?	2	4	C210.4	Remember
1.v)	Define controllability and observability for state models.	2	5	C210.6	Understand
2a)	What are the difficulties with Routh criterion? How to overcome them?	5	3	C210.3	Remember
2b)	The open loop transfer function of a unity feedback system is given by $G(s)H(s)=\frac{K(s+1)}{(s^3+as^2+2s+1)}$. Determine the values of K and a, if the system oscillates with a frequency 2 rad/sec.	5	3	C210.3	Understand
3a)	The open loop transfer function of a unity feedback system is given by $G(s)H(s)=\frac{K(s+2)}{(s^2+2s+2)}$. Sketch the root locus when open loop gain K is varied from 0 to ∞ .	5	3	C210.3	Apply
3b)	Explain in detail about phase-lead, phase-lag and lead-lag compensators.	5	4	C210.5	Remember
4)	Consider a unity feedback system with open loop transfer function $G(s) = \frac{1}{s(1+.02s)(1+0.05s)}$. Sketch the polar plot and determine gain margin and phase margin.	10	4	C210.4	Analyze
5a)	For the state equation: $\begin{bmatrix} \dot{x1} \\ \dot{x2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t)$ With a unit step input and the initial conditions are $X(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Find the State transition matrix.	5	5	C210.6	Apply
5b)	Diagonalize the system matrix $A = \begin{bmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix}$	5	5	C210.6	Understand