[image: image65.emf]
	UNIT - II




RELATIONAL ALGEBRA AND CALCULUS

2.0 PRELIMINARIES
The inputs and outputs of a query are relations. A query is evaluated using instances of each input relation and it produces an instance of the output relation. In defining relational algebra and calculus, the alternative of referring to fields by position is more convenient than referring to fields by name: Queries often involve the computation of intermediate results, which are themselves relation instances; and if we use field names to refer to fields, the definition of query language constructs must specify the names of fields for all intermediate relation instances.

We present a number of sample queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)

Boats( bid: integer, bname: string, color: string)

Reserves (sid: integer, bid:  integer, day: date)

The key fields are underlined, and the doma,in of each field is listed after the field name. Thus, sid is the key for Sailors, bid is the key for Boats, and all three fields together form the key for Reserves. Fields in an instance of one of these relations are referred to by name, or positionally, using the order in which they were just listed.
[image: image1.jpg](50| sname ] rating] age -

T 28 [yoppy [ 9 | 350
2 |Dustin |7 | 450 3T Lubbed § [ 355
51| Tubber [ [ 555 4 [awpy [ 5 [350
5 [Rusty [0 [550 55 [ Rusty | 10 [350

Figure 4.1 Tnstasce S1 of Salors Figure 42 Tastaace 52 of Sailos

T hid
22 | 101 | 10/10/%
58 | 103 [ 11/12/96

W ke Y s





2.1 RELATIONAL ALGEBRA
Relational algebra is one of the two formal query languages associated with the relational model. Queries in algebra are composed using a collection of operators. A fundamental property is that every operator in the algebra accepts (one or two) relation instances as arguments and returns a relation instance as the result. This property makes it easy to compose operators to form a complex query-a relational algebra expression is recursively defined to be a relation, a unary algebra operator applied to a single expression, or a binary algebra operator applied to two expressions. 
Each relational query describes a step-by-step procedure for computing the desired answer, based on the order in which operators are applied in the query. The procedural nature of the algebra allows us to think of an algebra expression as a recipe, or a plan, for evaluating a query, and relational systems in fact use algebra expressions to represent query evaluation plans.

2.1.1 Selection and Projection

Relational algebra includes operators to select rows from a relation (σ) and to project columns (π). These operations allow us to manipulate data in a single relation. Consider the instance of the Sailors relation shown in Figure 4.2, denoted as S2. We can retrieve rows corresponding to expert sailors by using the  σ operator. The expression
 [image: image2.emf]
evaluates to the relation shown in Figure 4.4. The subscript rating> 8 specifies the selection criterion to be applied while retrieving tuples. 
[image: image3.emf] 

The selection operator σ specifies the tuples to retain through a selection condition. In general, the selection condition is a Boolean combination (i.e., an expression using the logical connectives /\ and V) of terms that have the form attribute op constant or attributel op attribute2, where op is one of the comparison operators <, <=, =, ,#, >=, or >.  

The projection operator π  allows us to extract columns from a relation; for example, we can find out all sailor names and ratings by using π  The expression 

π  name, rating (S2)  

evaluates to the relation shown in Figure 4.5.
The expression

π  sname,rating (σ rati.ng>8 (S2) )

produces the result shown in Figure 4.7.

2.1.2 Set Operations

The following standard operations on sets are also available in relational algebra:

un'ion (U), intersection (n), set-difference (-), and cross-product (x). 

U Union: R U S returns a relation instance containing all tuples that occur in either relation instance R or relation instance S (or both). Rand S must be union-compatible, and the schema of the result is defined to be identical to the schema of R.
Two relation instances are said to be union-compatible if the following conditions hold:

-  they have the same number of the fields, and

- Corresponding fields, taken in order from left to right, have the same domains.

Union Example:
 S1 U S2

[image: image4.emf]
The union of S1 and S2 is shown in Figure 4.8. Fields are listed in order; field names are also inherited from S1. S2 has the same field names, of course, since it is also an instance of Sailors. In general, fields of S2 may have different names; recall that we require only domains to match. Note that the result is a set of tuples. Tuples that appear in both s1 and s2 appear only once in s1 U s2. 

n  Intersection: R n S returns a relation instance containing all tuples that occur in both Rand S. The relations Rand S must be union-compatible, and the schema of the result is defined to be identical to the schema of R.
Example:

[image: image5.emf]
- Set-difference: R-S returns a relation instance containing all tuples that occur in R but not in S. The relations Rand S must be union-compatible, and the schema of the result is defined to be identical to the schema of R.
Example:

[image: image6.emf]
X  Cross-product: R x S returns a relation instance whose schema contains all the fields of R (in the same order as they appear in R) followed by all the fields of S (in the same order as they appear in S). The result of R x S contains one tuple (1', s) (the concatenation of tuples r and s) for each pair of tuples r E R, s E S. The cross-product opertion is sometimes called Cartesian product. [ Each tuple of first relation gets concatenated with all tuples of second relation]
[image: image7.emf]
Renaming: It is often convenient to give the instance itself a name so that we can break a large algebra expression into smaller pieces by giving names to the results of sub expressions. 

We introduce a renaming operator p for this purpose. It is used to rename field name or relation name. 

The expression p(R(F), E) takes an arbitrary relational algebra expression E and returns an instance of a (new) relation called R. R contains the same tuples as the result of E and has the same schema as E, but some fields are renamed. The field names in relation R are the same as in E, except for fields renamed in the Renaming list F, which is a list of terms having the form oldname ( newname or position ( new Name. For p to be well-defined, references to fields (in the form of oldnames or positions in the renaming list) may be unambiguous and no two fields in the result may have the same name. Sometimes we want to only rename fields or (re)name the relation; we therefore treat both Rand F as optional in the use of p.  

Example:
p(Employee(salary( pay), Staff)

In the above example the Staff relation is renamed as Employee and the column salary is renamed as pay.
2.1.3 Joins: The join operation is one of the most useful operations in relational algebra and the most commonly used way to combine information from two or more relations.  

Condition Joins: The most general version of the join operation accepts a join condition c and a pair of relation instances as arguments and returns a relation instance. The join condition is identical to a selection condition in form. The operation is defined as follows:

[image: image8.emf]
Thus [image: image9.emf] is defined to be a cross-product followed by a selection. Note that the condition c can (and typically does) refer to attributes of both Rand S. The reference to an attribute of a relation, say, R, can be by position (of the form R.i) or by name (of the form R.name).

Example: [image: image10.emf]
[image: image11.emf]
Equijoin: A common special case of the join operation R[image: image12.emf] S is when the join condition consists solely of equalities of the form R.name1 = S.name2, that is, equalities between two fields in Rand S. In this case, obviously, there is some redundancy in retaining both attributes in the result. For join conditions that contain only such equalities, the join operation is refined by doing an additional projection in which S.name2 is dropped. The join operation with this refinement is called equijoin.

Example:
[image: image13.emf]
[image: image14.png]wzmrulvn[uu‘- age | bid-J| day
101 | 10/10/96

Dustin

Ru

17
i 10





Natural Join: A further special case of the join operation R[image: image15.emf] S is an equi Joi in which equalities are specified on all fields having the same name in Rand S. In this case, we can simply omit the join condition; the default is that the join condition is a collection of equalities on all common fields. We call this special case a natural Join, and it has the nice property that the result is guaranteed not to have two fields with the same name.

2.1.4 Division: The division operator is useful for expressing certain kinds of queries for example, "Find the names of sailors who have reserved all boats."  
Consider two relation instances A and B in which A has (exactly) two fields x and y and B has just one field y, with the same domain as in A. We define the division operation AlB as the set of all x values (in the form of unary tuples) such that for every y value in (a tuple of) B, there is a tuple (x,y) in A.

Another way to understand division is as follows. For each x value in (the first column of) A, consider the set of y values that appear in (the second field of) tuples of A with that x value. If this set contains (all y values in) B, the x value is in the result of AlB.
2.1.5 More Examples of Algebra Queries

(Q1) Find the names of sailors who have reserved boat 103
[image: image16.emf]
[image: image17.emf][image: image18.emf]
[image: image19.emf]
[image: image20.emf]
[image: image21.emf]
[image: image22.emf]
[image: image23.emf]
[image: image24.emf]
[image: image25.emf]
[image: image26.emf]
[image: image27.emf]
2.2 Relational calculus

Relational calculus is an alternative to relational algebra. In contrast to the algebra, which is procedural, the calculus is nonprocedural, or declarative, in that it allows us to describe the set of answers without being explicit about how they should be computed. The variant of the calculus we present in detail is called the tuple relational calculus (TRC). Variables in TRC take on tuples as values. In another variant called the domain relational calculus (DRC), the variables range over field values. 
2.2.1 Tuple Relational Calculus: A tuple variable is a variable that takes on tuples of a particular relation schema as values. That is, every value assigned to a given tuple variable has the same number and type of fields. A tuple relational calculus query has the form { T I p(T) }, where T is a tuple variable and p(T) denotes a formula that describes T; we will shortly define formulas and queries rigorously. The result of this query is the set of all tuples t for which the formula p(T) evaluates to true with T = t. The language for writing formulas p(T) is thus at the heart of TRC and essentially a simple subset of first-order logic.
[image: image28.emf]
Syntax of TRC Queries
Beginning with the notion of a formula,  Let Rel be a relation name, Rand S be tuple variables, a be an attribute of R, and b be an attribute of S. Let op denote an operator in the set {<, >, =

, >=,<=, ≠ }. An atomic formula is one of the following:

R E Ref

R.a op S.b

R.a op constant, or constant op R.a
A TRC query is defined to be expression of the form {T I p(T)}, where T is the only free variable in the formula p.
Semantics of TRC Queries

A query is evaluated on a given instance of the database. Let each free variable in a formula F be bound to a tuple value. For the given assignment of tuples to variables, with respect to the given database instance, F evaluates to (or simply 'is') true if one of the following holds:

• F is an atomic formula R E Rel, and R is assigned a tuple in the instance of relation Rel.

• F is a comparison R.a op S.b, R.a op constant, or constant op R.a, and the tuples assigned to Rand S have field values R.a and S.b that make the comparison true.

• F is of the form ―p and p is not true, or of the form p ^q, and both p and q are true, or of the form p V q and one of them is true, or of the form p => q and q is true whenever p is true.

• F is of the form ЭR(p(R)), and there is some assignment of tuples to the free variables in p(R), including the variable R,S that makes the formula p(R) true.

• F is of the form VR(p(R)), and there is some assignment of tuples to the free variables in p(R) that makes the formula p(R) true no matter what tuple is assigned to R.
Examples of TRC Queries
[image: image29.emf]
[image: image30.emf]
2.2.2 Domain Relational Calculus: A domain variable is a variable that ranges over the values in the domain of some attribute (e.g., the variable can be assigned an integer if it appears in an attribute whose domain is the set of integers). A DRC query has the form {(XI,X2, ... ,Xn ) I P((XI,X2, ... ,Xn ))}, where each Xi is either a domain variable or a constant and p( (Xl, X2, ... ,xn )) denotes a DRC formula whose only free variables are the variables among the Xi, 1 Sis n. The result of this query is the set of all tuples (Xl, X2, ... , x n ) for which the formula evaluates to

true.

A DRC formula is defined in a manner very similar to the definition of a TRC formula. The main difference is that the variables are now domain variables. Let op denote an operator in the set {<, >, =, <=,>=, ≠ } and let X and Y be domain variables. An atomic formula in DRC is one of the following:
· (Xl, X2, ... , Xn ) E Rel, where Rel is a relation with n attributes; each xi , 1 <=i <= n is either a variable or a constant

· X op Y

· X op constant, or constant op X
A formula is recursively defined to be one of the following, where P and q are themselves formulas and p(X) denotes a formula in which the variable X appears:

[image: image31.emf]
Example of DRC
[image: image32.emf]
[image: image33.emf]
2.2.3 EXPRESSIVE POWER OF ALGEBRA AND CALCULUS

We presented two formal query languages for the relational model. Are they equivalent in power? Can every query that can be expressed in relational algebra also be expressed in relational calculus? The answer is yes, it can. 
Regarding expressiveness, we can show that every query that can be expressed using a safe relational calculus query can also be expressed as a relational algebra query. The expressive power of relational algebra is often used as a metric of how powerful a relational database query language is. If a query language can express all the queries that we can express in relational algebra, it is said to be relationally complete. A practical query language is expected to be relationally complete; in addition, commercial query languages typically support features that allow us to express some queries that cannot be expressed in relational algebra.
SQL: QUERIES, CONSTRAINTS, TRIGGERS
Structured Query Language (SQL) is the most widely used commercial relational database language. It was originally developed at IBM in the SEQUEL XRM and System-R projects (1974-1977). Almost immediately, other vendors introduced DBMS products based on SQL, and it is now a de facto standard. SQL continues to evolve in response to changing needs in the database area.
2.3 OVERVIEW
The SQL language has several aspects to it.

The Data Manipulation Language (DML): This subset of SQL allows users to pose queries and to insert, delete, and modify rows. Queries are the main focus of this chapter. We covered DML commands to insert, delete, and modify rows
The Data Definition Language (DDL): This subset of SQL supports the creation, deletion, and modification of definitions for tables and views. Integrity constraints can be defined on tables, either when the table is created or later.  Although the standard does not discuss indexes, commercial implementations also provide commands for creating and deleting indexes.

Triggers and Advanced Integrity Constraints: The new SQL:1999 standard includes support for triggers, which are actions executed by the DBMS whenever changes to the database meet conditions specified in the trigger. 

Embedded and Dynamic SQL: Embedded SQL features allow SQL code to be called from a host language such as C or COBOL. Dynamic SQL features allow a query to be constructed (and executed) at run-time.

Client-Server Execution and Remote Database Access: These commands control how a client application program can connect to an SQL database server, or access data from a database over a network.

Transaction Management: Various commands allow a user to explicitly control aspects of how a transaction is to be executed.  
Security: SQL provides mechanisms to control users' access to data objects such as tables and views. 
Advanced features: The SQL:1999 standard includes object-oriented features, recursive queries, decision support queries, and also addresses emerging areas such as data mining, spatial data, and text and XML data management
2.3.1 THE FORM OF A BASIC SQL QUERY
The basic form of an SQL query is as follows:
SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification
Every query must have a SELECT clause, which specifies columns to be retained in the result, and a FROM clause, which specifies a cross-product of tables. The optional WHERE clause specifies selection conditions on the tables mentioned in the FROM clause.
[image: image34.emf]
[image: image35.emf]
[image: image36.emf]
The syntax of a basic SQL query in more detail.

• The from-list in the FROM clause is a list of table names. A table name can be followed by a range variable; a range variable is particularly useful when the same table name appears more than once in the from-list.

• The select-list is a list of (expressions involving) column names of tables named in the from-list. Column names can be prefixed by a range variable.

• The qualification in the WHERE clause is a boolean combination (i.e., an expression using the logical connectives AND, OR, and NOT) of conditions of the form expression op expression, where op is one of the comparison operators {<, <=, =, <>, >=, >}. An expression is a column name, a constant, or an (arithmetic or string) expression.

• The DISTINCT keyword is optional. It indicates that the table computed as an answer to this query should not contain duplicates, that is, two copies of the same row. The default is that duplicates are not eliminated.
2.3.2 Examples of Basic SQL Queries
[image: image37.png](Q ) Find the sids of sailors who have Reserved a red boat

SELECT  Rsid
FROM  Boats B, Reserves R
WHRE  Bbid = Rbid AD S.color = ‘Ted’




[image: image38.png](Q ) Find the names of sailors who have rescrved a red  boat

SELECT  S.sname
FROM  Sailors S, Reserves R, Boats I§
WHERE  S.sid = R.sid AND R.bid = 13.bid AND B.color = 'red'




[image: image39.png](Q4) Find the names of sailors who have Teserved at least one boat

SELECT S.sname
FROM  Sailors S, Reserves R
WHERE S.sid = Rsid




2.3.3 Expressions and Strings in the SELECT Command: SQL supports a more general version of the select-list than just a list of colu1nns. Each item in a select-list can be of the form expression AS column_name, where expression is any arithmetic or string expression over column names  and constants, and column name is a new name for this column in the output of the query. It can also contain aggregates such as sum and count etc. 
[image: image40.png](Q ) Compute increments for the ratings of peTsons who have sailed two dif
ferent boats on the same day.

SELECT S.sname, S.rating*1 S rating
FROM  Sailors S, Reserves R1, Reserves R2
WHERE S.sid = Rlsid 0D S.sid = R2sid

0D Rl.day = R2.day &D R1.bid <

R2bid




[image: image41.png](Q ) Find the ages of sailors whosename begins and ends with B and has at
least three chameers.

SELECT Sage FROM  Sailors S
WHERE S sname LIKE 'B.%B'




2.4 UNION, INTERSECT, AND EXCEPT
SQL provides three set-manipulation constructs that extend the basic query form. Since the answer to a query is a multiset of rows, it is natural to consider the use of operations such as union, intersection, and difference. SQL supports these operations under the names UNION, INTERSECT, and EXCEPT. 
SQL also provides other set operations: IN (to check if an element is in a given set), op ANY, op ALL (to compare a value with the elements in a given set, using comparison operator op), and EXISTS (to check if a set is empty). IN and EXISTS can be prefixed by NOT, with the obvious modification to their meaning. 
[image: image42.png](Q ) Find the names of sailors who have reserved a red or a green boat

SELECT S.sname
FROM  Sailors §, Reserves R, Boats B
WHEFE Ssid = Risid D Rbid = B.bid

D (B.color





[image: image43.png](Q ) Find the names of sailors who have reserved both a red and a green boat.
SELECT S.sname
FROM  Sailors S, Reserves R, Boats B
WHERE  Ssicl = Rusid AND R.bid = B.bid AND B.color = 'red’
UNION
SELECT 52 .sname.
FROM_ Sailors 52, Boats B2, Reserves R2
WHERE  S.sid = H2.5id AND R2.bid = B2bicl AND B2.color = 'green’




[image: image44.png](Q ) Find the sids of all sailor’s who have reserved red boats but not green
boats

SELECT Ssid
FROM_ Sailors S, Reserves R, Boats B

WHERE S.sid = Rsid AND R.bid = B.bid D B.color = 'red’
EXCEPT

SELECT S2.sid

FROM  Sailors S2, Reserves R2, Boats B2

WHERE  $2.sid = R2.sid AND R2 bid = B2.bid AND B2.color = ‘green’




[image: image45.png](Q ) Find all sids of sailors who have a rating of 10 or reserved boat 104.

SELECT S.sid
FROM  Sailors S
WHEE S.sating = 10
UNION

SELECT Resid
FROM  Reserves R
WHEFE Robid = 104




2.5 NESTED QUERIES
One of the most powerful features of SQL is nested queries. A nested query is a query that has another query embedded within it; the embedded query is called a subquery. The embedded query can of course be a nested query itself; thus queries that have very deeply nested structures are possible. When writing a query, we sometimes need to express a condition that refers to a table that must itself be computed. The query used to compute this subsidiary table

is a subquery and appears as part of the main query. A subquery typically appears within the WHERE clause of a query. Subqueries can sometimes appear in the FROM clause or the HAVING clause.

2.5.1 Introduction to Nested Queries
[image: image46.png](Q ) Find the names of sailors who have reserved boat 103

SELECT S.sname
FROM_ Sailors §

WHERE S.sid N ( SELECT Rusid
FROM  Reserves R

WHERE Rbid = 103 )





[image: image47.png](Q ) Find the names of sailors who have reserved a red boat

SELECT S sname
FROM Sailors S
WHERE S.sid IN ( SELECT Rsid
FROM  Reserves R.
WHERE Rbid IN (SELECT Bbid
FROM Boats B





[image: image48.png](Q ) Find the names of suilors who have not reserved a red boat.

SELECT S.sname
FROM Sailors S
WEERE S.sid NOT IN ( SELECT Rsid
FROM  Reserves R
WHERE Rbid IN (SELECT B.bid
FROM_ Boats B
WHEFE B.color = ‘red )




2.5.2 Correlated Nested Queries

In the nested queries seen thus far, the inner subquery has been completely independent of the outer query. In general, the inner subquery could depend on the row currently being examined in the outer query (in terms of our conceptual evaluation strategy). 
[image: image49.png](Q ) Find the names of sailors who have reserved boat number 103.

SELECT S.sname
FROM  Sailors S
WHERE EXISTS ( SELECT *
FROM  Reserves R
WHERE Robid = 103
D Rsid = Ssid)




The EXISTS operator is another set comparison operator, such as IN. It allows us to test whether a set is nonempty, an implicit comparison with the empty set. Thus, for each Sailor row 5, we test whether the set of Reserves rows R such that R.bid = 103 AND S.sid = R.sid is nonempty. If so, sailor 5 has reserved boat 103, and we retrieve the name. The subquery clearly depends on the current row S and must be re-evaluated for each row in Sailors. The occurrence of S in the subquery (in the form of the literal S.sid) is called a corelation, and such queries are called corelated queries.
2.5.3 Set-Comparison Operators: The set-comparison operators EXISTS, IN, and UNIQUE, are also with their negated versions NOT. SQL also supports op ANY and op ALL, where op is one of the arithmetic comparison operators {<, <=, =, <>, >=, >}. (SOME is also available, but it is just a synonym for ANY.)
[image: image50.png](Q ) Find sailors whose rating is better than some sailor called Horatio.

SELECT S.sid
FROM  Sailors S
WHERE S.rating > ANY ( SELECT S2.rating

FROM_ Sailors 2

WEERE S2.sname = ‘Horatio' )




[image: image51.png](Q  Find the sailors with the highest rating.

SELECT S.sid

FROM  Sailors S

WHERE S.rating >= ALL ( SELECT S2 sating
FROM  Sailors S2 )




[image: image52.png](@ ) Find the names of sailors who have reserved both red and green boat

SELECT S.sname

FROM  Sailors S, Reserves R, Boats B
WHERE S.sid = Rsid D Rbid = B.bid AD B.color = 'red

A0 Ssid IN ( SELECT S2sid

FROM_ Sailors S2, Boats B2, Reserves R2
WHERE $2.5id = R2.sid D R2.bid = BLbid

D B2.color = 'green’ )





2.5.4 AGGREGATE OPERATORS

SQL allows the use of arithmetic expressions. We consider a powerful class of constructs for computing aggregate values such as MIN and SUM. These features represent a significant extension of relational algebra. SQL supports five aggregate operations, which can be applied on any column, say A, of a relation:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Note that it does not make sense to specify DISTINCT in conjunction with MIN or MAX .
[image: image53.png](Q ) Find the average age of all sailors.

SELECT AVG (S.3ge)
FROM  Sailors S




[image: image54.png](© ) Find the average age of sailors with a rating of 10

SELECT AVG (S.age)
ROM_ Sailors §
WHERE  S.rating = 10




[image: image55.png](Q ) Find the name and age of the oldest sailor.

SELECT S.sname, Sage

FROM  Sailors §

WHERE S.age = ( SELECT MAX (S2age)
FROM Sailors 52 )




[image: image56.png](Q ) Count the number of sailors.

SELECT COWNT () FROM  Sailors §




[image: image57.png](Q ) Find the names of sailors who are older than the oldest sailor with a
rating of 10.

SELECT S sname

ROM Sailors §

WEERE Suage > ( SELECT VX ( S2age )
FOM  Sailors 52
WHEFE S2.rating

10)




2.5.5 The GROUP BY and HAVING Clauses

Often we want to apply aggregate operations to each of a number of groups of rows in a relation, where the number of groups depends on the relation instance (i.e., is not known in advance). 
To write such queries, we need a major extension to the basic SQL query form, namely, the GROUP BY clause. In fact, the extension also includes an optional HAVING clause that can be used to specify qualifications over groups. The general form of an SQL query with these extensions is:

SELECT [DISTINCT] select-list

FROM from-list

WHERE 'qualification’

GROUP BY grouping-list

HAVING group-qualification

[image: image58.png](Q ) Find the age of the youngest sailor for each rating level
SELECT  S.rating, MIN (Sage)
FOM  Sailors S
GROUP BY S.rating




Some important points concerning the new clauses:

The select-list in the SELECT clause consists of 
     (1) a list of column names and 
      (2) a list of terms having the form agg.op ( column-name) AS new name.   We already saw AS used to rename output columns. Columns that are the result of aggregate operators do not already have a column name, and therefore giving the column a name with AS is especially useful.

Every column that appears in (1) must also appear in grouping-list. The reason is that each row in the result of the query corresponds to one group, which is a collection of rows that agree on the values of columns in grouping list. In general, if a column appears in list (1), but not in grouping-list, there can be multiple rows within a group that have different values in this column, and it is not clear what value should be assigned to this column in an answer row.

We can sometimes use primary key information to verify that a column has a unique value in all rows within each group. 
The expressions appearing in the group-qualification in the HAVING clause must have a single value per group. The intuition is that the HAVING clause determines whether an answer row is to be generated for a given group.

To satisfy this requirement in SQL-92, a column appearing in the group qualification must appear as the argument to an aggregation operator, or it must also appear in grouping-list. In SQL:1999, two new set functions have been introduced that allow us to check whether every or any row in a group satisfies a condition; this allows us to use conditions similar to those in a WHERE clause.

If GROUP BY is omitted, the entire table is regarded as a single group.
[image: image59.png](Q ) Find the age of the youngest sailor who is eligible to vole (i.e., is at least
18 years old) for each rating level with at lcast two such sailors.

SELECT ~ Srating, MIN (S.age) AS minage
FROM  Sailors S

WHEE  Sage >= 18

GROUP BY S.ating

HAVNG  COUNT () > 1




[image: image60.png](Q ) For each red boat; find the number of reservations for this boat

SELECT  B.bid, COUNT (*) AS reservationcount
FROM  Boats B, Reserves R

WHERE  R.bid = B.bid AND B.color = 'red’
GROUP BY B.bid




[image: image61.png](Q ) Find the avemge age of sailoTs fOT each ruling level that has at least two:
sailoTs.

SELECT  S.sating, AVG (Sage) &S aveage
BOM  Sailors S

GROUP BY S.rating

HAVING  COUNT (*) > 1




2.6 NULL VALUES
SQL provides a special column value called null to use if value is unknown. We use null when the column value is either unknown or inapplicable. 

2.6.1 Comparisons Using Null Values

If we compare two null values using <, >, =, and so on, the result is always unknown. For example, if we have null in two distinct rows of the sailor relation, any comparison returns unknown.

SQL also provides a special comparison operator IS NULL to test whether a column value is null; for example, we can say rating IS NULL, which would evaluate to true on the row representing Dan if his rating is not given. We can also say rating IS NOT NULL, which would evaluate to false on the row for Dan.

2.6.2 Logical Connectives AND, OR, and NOT

We must define the logical operators AND, OR, and NOT using a three-value logic in

which expressions evaluate to true(T), false(F), or unknown (U).  


	And

	conditon1
	condition2
	Result

	  F
	F
	F

	F
	T
	F

	F
	U
	F

	T
	F
	F

	 T
	T
	T

	T
	U
	U

	U
	U
	U


The expression NOT unknown is defined to be unknown.

2.6.3 Disallowing Null Values: We can disallow null values by specifying NOT NULL as part of the field definition; for example, sname CHAR(20) NOT NULL. In addition, the fields in a primary key are not allowed to take on null values. Thus, there is an implicit NOT NULL constraint for every field listed in a PRIMARY KEY constraint. 
2.7 COMPLEX INTEGRITY CONSTRAINTS IN SQL

2.7.1 Constraints over a Single Table: We can specify complex constraints over a single table using table constraints, which have the form CHECK conditional-expression. For example, to ensure that rating must be an integer in the range 1 to 10, we could use:
[image: image62.emf]
To enforce the constraint that Interlake boats cannot be reserved, we could use:
[image: image63.emf]
2.7.2 Domain Constraints and Distinct Types

A user can define a new domain using the CREATE DOMAIN statement, which uses CHECK constraints.

CREATE DOMAIN ratingval INTEGER DEFAULT 1

CHECK ( VALUE >= 1 AND VALUE <= 10 )

INTEGER is the underlying, or source, type for the domain ratingval, and every ratingval value must be of this type. Values in ratingval are further restricted by using a CHECK constraint; in defining this constraint, we use the keyword VALUE to refer to a value in the domain. By using this facility, we can constrain the values that belong to a domain using the full power of SQL queries. Once a domain is defined, the name of the domain can be used to restrict column values in a table; we can use the following line in a schema declaration, for example:

rating ratingval
The optional DEFAULT keyword is used to associate a default value with a domain. If the domain ratingval is used for a column in some relation and no value is entered for this column in an inserted tuple, the default value 1 associated with ratingval is used.
Example:
CREATE TYPE ratingtype AS INTEGER

2.7.3 Assertions: ICs over Several Tables

Table constraints are associated with a single table, although the conditional expression in the CHECK clause can refer to other tables. Table constraints are required to hold only if the associated table is nonempty. Thus, when a constraint involves two or more tables, the table constraint mechanism is sometimes cumbersome and not quite what is desired. To cover such situations, SqL supports the creation of assertions, which are constraints not associated with anyone table.
As an example, suppose that we wish to enforce the constraint that the number of boats plus the number of sailors should be less than 100. (This condition might be required, say, to qualify as a 'smaIl' sailing club.) We could try the following assertion:
CREATE ASSERTION smallClub

CHECK (( SELECT COUNT (S.sid) FROM Sailors S )

+ ( SELECT COUNT (B. bid) FROM Boats B)

< 100 )
2.8 TRIGGERS AND ACTIVE DATABASES
A trigger is a procedure that is automatically invoked by the DBMS in response to specified changes to the database, and is typically specified by the DBA. A database that has a set of associated triggers is called an active database. A trigger description contains three parts:

Event: A change to the database that activates the trigger.

Condition: A query or test that is run when the trigger is activated.

Action: A procedure that is executed when the trigger is activated and its condition is true.
A trigger can be thought of as a 'daemon' that monitors a database, and is executed when the database is modified in a way that matches the event specification. An insert, delete, or update statement could activate a trigger, regardless of which user or application invoked the activating statement; users may not even be aware that a trigger was executed as a side effect of their program.

A condition in a trigger can be a true/false statement (e.g., all employee salaries are less than $100,000) or a query. A query is interpreted as true if the answer set is nonempty and false if the query has no answers. If the condition part evaluates to true, the action associated with the trigger is executed.

A trigger action can examine the answers to the query in the condition part of the trigger, refer to old and new values of tuples modified by the statement activating the trigger, execute new queries, and make changes to the database.

In fact, an action can even execute a series of data-definition commands (e.g., create new tables, change authorizations) and transaction-oriented commands (e.g., commit) or call host-language procedures.
An important issue is when the action part of a trigger executes in relation to the statement that activated the trigger. For example, a statement that inserts records into the Students table may activate a trigger that is used to maintain statistics on how many student’s younger than 18 are inserted at a time by a typical insert statement. Depending on exactly what the trigger does, we may want its action to execute before changes are made to the Students table or afterwards: A trigger that initializes a variable used to count the number of qualifying insertions should be executed before, and a trigger that executes once per qualifying inserted record and increments the variable should be executed after each record is inserted (because we may want to examine the values in the new record to determine the action).
2.8.1 Examples of Triggers in SQL

[image: image64.emf]
In the examples shown in Figure 5.20,the trigger called iniLcount initializes a counter variable before every execution of an INSERT statement that adds tuples to the Students relation. The trigger called incr_count increments the counter for each inserted tuple that satisfies the condition age < 18.

One of the example triggers in Figure 5.20 executes before the activating statement, and the other example executes after it. A trigger can also be scheduled to execute instead of the activating statement; or in deferred fashion, at the end of the transaction containing the activating statement; or in asynchronous fashion, as part of a separate transaction.
The example in Figure 5.20 illustrates another point about trigger execution:

A user must be able to specify whether a trigger is to be executed once per modified record or once per activating statement. If the action depends on individual changed records, for example, we have to examine the age field of the inserted Students record to decide whether to increment the count, the trigger ing event should be defined to occur for each modified record; the FOR EACH ROW clause is used to do this. Such a trigger is called a row-level trigger. On the other hand, the iniLcount trigger is executed just once per INSERT statement, regardless of the number of records inserted, because we have omitted the FOR EACH ROW phrase. Such a trigger is called a statement-level trigger.

In Figure 5.20, the keyword new refers to the newly inserted tuple. If an existing tuple were modified, the keywords old and new could be used to refer to the values before and after the modification. 
2.8.2 DESIGNING ACTIVE DATABASES

Triggers offer a powerful mechanism for dealing with changes to a database, but they must be used with caution. The effect of a collection of triggers can be very complex, and maintaining an active database can become very difficult. Often, a judicious use of integrity constraints can replace the use of triggers.
Why Triggers Can Be Hard to Understand
In an active database system, when the DBMS is about to execute a statement that modifies the databa.se, it checks whether some trigger is activated by the statement. If so, the DBMS processes the trigger by evaluating its condition part, and then  executing its action part.
If a statement activates more than one trigger, the DBMS typically processes all of them, in same arbitrary order. An important point is that the execution of the action part of a trigger could in turn activate another trigger. In particular, the execution of the action part of a trigger could again activate the same trigger; such triggers are called recursive triggers. The potential for such chain activations and the unpredictable order in which a DBMS processes activated triggers can make it difficult to understand the effect of a collection of triggers.
Constraints versus Triggers:  A common use of triggers is to maintain database consistency. An integrity constraint (e.g., a foreign key constraint) achieves the same goals. The meaning of a constraint is not defined operationally, unlike the effect of a trigger. This property makes a constraint easier to understand, and also gives the DBMS more opportunities to optimize execution. A constraint also prevents the data from being made inconsistent by any kind of statement, whereas a trigger is activated by a specific kind of statement (INSERT, DELETE, or UPDATE). Again, this restriction makes a constraint easier to understand.

On the other hand, triggers allow us to maintain database integrity in more flexible ways.
Other Uses of Triggers:  Many potential uses of triggers go beyond integrity maintenance. Triggers can alert users to unusual events. Triggers can generate a log of events to support auditing and security checks. For example, each time a customer places an order, we can create a record with the customer's ID and current credit limit and insert this record in a customer history table. Subsequent analysis of this table might suggest candidates for an increased credit limit.
We can use triggers to gather statistics on table accesses and modifications. Some database systems even use triggers internally as the basis for managing replicas of relations. Our list of potential uses of triggers is not exhaustive; for example, triggers have also been considered for workflow management and enforcing business rules.



OR�
�
conditon1�
condition2�
Result�
�
  F�
F�
F�
�
F�
T�
T�
�
F�
U�
U�
�
T�
F�
T�
�
 T�
T�
T�
�
T�
U�
T�
�
U�
U�
U�
�






UNIT-II


Relational Algebra and Calculus: Relational Algebra - Selection and Projection, Set operations, Renaming, Joins, Division, Examples of Algebra Queries, Relational calculus - Tuple relational Calculus - Domain relational calculus - Expressive Power of Algebra and calculus.


Form of Basic SQL Query - Examples of Basic SQL Queries, Introduction to Nested Queries, Correlated Nested Queries, Set - Comparison Operators, Aggregate Operators, NULL values - Comparison using Null values - Logical connectives - AND, OR and NOT - Impact on SQL Constructs, Outer Joins, Disallowing NULL values, Complex Integrity Constraints in SQL Triggers and Active Data bases.











Department of CSE, GPCET | 69 


