	UNIT – IV

Introduction
4.0 TRANSACTIONS

Often, a collection of several operations on the database appears to be a single unit from the point of view of the database user. For example, a transfer of funds from a checking account to a savings account is a single operation from the customer’s standpoint; within the database system, however, it consists of several operations.
Collections of operations that form a single logical unit of work are called transactions. A database system must ensure proper execution of transactions despite failures—either the entire transaction executes, or none of it does. Furthermore, it must manage concurrent execution of transactions in a way that avoids the introduction of inconsistency.
4.1 Transaction Concept
A transaction is a unit of program execution that accesses and possibly updates various data items. Usually, a transaction is initiated by a user program written in a high-level data-manipulation language (typically SQL), or programming language (for example, C++, or Java), with embedded database accesses in JDBC or ODBC. A transaction is delimited by statements (or function calls) of the form begin transaction and end transaction. The transaction consists of all operations executed between the begin transaction and end transaction.

Atomicity: The collection of steps must appear to the user as a single, indivisible unit. Since a transaction is indivisible, it either executes in its entirety or not at all. This “all-or-none” property is referred to as atomicity. Thus, if a transaction begins to execute but fails for whatever reason, any changes to the database that the transaction may have made must be undone.
Consistency: Execution of a transaction in isolation (that is, with no other transaction executing concurrently) preserves the consistency of the database.

Isolation: Furthermore, since a transaction is a single unit, its actions cannot appear to be separated by other database operations not part of the transaction. Therefore, the database system must take special actions to ensure that transactions operate properly without interference from concurrently executing database statements.

Durability: After a transaction completes successfully, the changes it has made to the database persist, even if there are system failures.
These properties are often called the ACID properties
4.2 A Simple Transaction Model

The data items in our simplified model contain a single data value. Each data item is identified by a name (typically a single letter in our examples, that is, A, B, C, etc.).

Transactions access data using two operations:

• read(X), which transfers the data item X from the database to a variable, also called X, in a buffer in main memory belonging to the transaction that executed the read operation.

• write(X), which transfers the value in the variable X in the main-memory buffer of the transaction that executed the write to the data item X in the database.

Let Ti be a transaction that transfers $50 from account A to account B. This transaction can be defined as:
[image: image1.png]T;: read(A);
A=A —-50;
write(A);
read(B);
B:=B +50;
write(B).

4.3 Storage Structure

To understand how to ensure the atomicity and durability properties of a transaction, we must gain a better understanding of how the various data items in the database may be stored and accessed.
• Volatile storage. Information residing in volatile storage does not usually survive system crashes. Examples of such storage are main memory and cache memory. Access to volatile storage is extremely fast, both because of the speed of the memory access itself, and because it is possible to access any data item in volatile storage directly.

• Nonvolatile storage. Information residing in nonvolatile storage survives system crashes. Examples of nonvolatile storage include secondary storage devices such as magnetic disk and flash storage, used for online storage, and tertiary storage devices such as optical media, and magnetic tapes, used for archival storage. At the current state of technology, nonvolatile storage is slower than volatile storage.

• Stable storage. Information residing in stable storage is never lost. Although stable storage is theoretically impossible to obtain, it can be closely approximated by techniques that make data loss extremely unlikely. To implement stable storage, we replicate the information in several nonvolatile storage media (usually disk) with independent failure modes. Updates must be done with care to ensure that a failure during an update to stable storage does not cause a loss of information.
For a transaction to be durable, its changes need to be written to stable storage. Similarly, for a transaction to be atomic, log records need to be written to stable storage before any changes are made to the database on disk. Clearly, the degree to which a system ensures durability and atomicity depends on how stable its implementation of stable storage really is. In some cases, a single copy on disk is considered sufficient, but applications whose data are highly valuable and whose transactions are highly important require multiple copies, or, in other words, a closer approximation of the idealized concept of stable storage.
4.4 Transaction Atomicity and Durability

A transaction may not always complete its execution successfully. Such a transaction is termed aborted. If we are to ensure the atomicity property, an aborted transaction must have no effect on the state of the database. Thus, any changes that the aborted transaction made to the database must be undone. Once the changes caused by an aborted transaction have been undone, we say that the transaction has been rolled back.
It is part of the responsibility of the recovery scheme to manage transaction aborts. This is done typically by maintaining a log. Each database modification made by a transaction is first recorded in the log. We record the identifier of the transaction performing the modification,

the identifier of the data item being modified, and both the old value (prior to modification) and the new value (after modification) of the data item. Only then is the database itself modified. Maintaining a log provides the possibility of redoing a modification to ensure atomicity and durability as well as the possibility of undoing a modification to ensure atomicity in case of a failure during transaction execution.
A transaction that completes its execution successfully is said to be committed. A committed transaction that has performed updates transforms the database into a new consistent state, which must persist even if there is a system failure. Once a transaction has committed, we cannot undo its effects by aborting it. The only way to undo the effects of a committed transaction is to execute a compensating transaction.
We need to be more precise about what we mean by successful completion of a transaction. We therefore establish a simple abstract transaction model. A transaction must be in one of the following states:

• Active, the initial state; the transaction stays in this statewhile it is executing.

• Partially committed, after the final statement has been executed.

• Failed, after the discovery that normal execution can no longer proceed.

• Aborted, after the transaction has been rolled back and the database has been restored to its state prior to the start of the transaction.

• Committed, after successful completion.

The state diagram corresponding to a transaction appears in Figure 4.1. Atransaction is said to have terminated if it has either committed or aborted
[image: image2.png]Figure 4.1 State diagram of a transaction.

A transaction enters the failed state after the system determines that the transaction can no longer proceed with its normal execution. Such a transaction must be rolled back. Then, it

enters the aborted state. At this point, the system has two options:

• It can restart the transaction, but only if the transaction was aborted as a result of some hardware or software error that was not created through the internal logic of the transaction. A restarted transaction is considered to be a new transaction.

• It can kill the transaction. It usually does so because of some internal logical error that can be corrected only by rewriting the application program, or because the input was bad, or because the desired data were not found in the database.
We must be cautious when dealing with observable external writes, such as writes to a user’s screen, or sending email. Once such a write has occurred, it cannot be erased, since it may have been seen external to the database system.
4.5 Transaction Isolation

Transaction-processing systems usually allow multiple transactions to run concurrently.

Allowing multiple transactions to update data concurrently causes several complications with consistency of the data, as we saw earlier. Ensuring consistency in spite of concurrent execution of transactions requires extra work; it is far easier to insist that transactions run serially—that is, one at a time, each starting only after the previous one has completed. However, there are two good reasons for allowing concurrency:

• Improved throughput and resource utilization: A transaction consists of many steps. Some involve I/O activity; others involve CPU activity. The CPU and the disks in a computer system can operate in parallel. Therefore, I/O activity can be done in parallel with processing at the CPU. The parallelism of the CPU and the I/O system can therefore be exploited to run multiple transactions in parallel. While a read or write on behalf of one transaction is in progress on one disk, another transaction can be running in the CPU, while another disk may be executing a read or write on behalf of a third transaction. All of this increases the throughput of the system—that is, the number of transactions executed in a given amount of time. Correspondingly, the processor and disk utilization also increase; in other words, the processor

and disk spend less time idle, or not performing any useful work.
• Reduced waiting time: There may be a mix of transactions running on a system, some short and some long. If transactions run serially, a short transaction may have to wait for a preceding long transaction to complete, which can lead to unpredictable delays in running a transaction. If the transactions are operating on different parts of the database, it is better to let them run

concurrently, sharing the CPU cycles and disk accesses among them. Concurrent execution reduces the unpredictable delays in running transactions. Moreover, it also reduces the average response time: the average time for a transaction to be completed after it has been submitted.
The motivation for using concurrent execution in a database is essentially the same as the motivation for using multiprogramming in an operating system with scheduling ensuring consistency and isolation.
The database system must control the interaction among the concurrent transactions to prevent them from destroying the consistency of the database. It does so through a variety of mechanisms called concurrency-control schemes.
Consider again the simplified banking system, which has several accounts, and a set of transactions that access and update those accounts. Let T1 and T2 be two transactions that transfer funds from one account to another. Transaction T1 transfers $50 from account A to account B. It is defined as:

[image: image3.png]Ti: read(A);
A:=A—-50;
write(A);
read(B);
B:=B+50;
write(B).

Transaction T2 transfers 10 percent of the balance from account A to account B. It is defined as:
[image: image4.png]Tp: read(A);
temp := A* 0.1,
A=A — temp;
write(A);
read(B);
B :=B + temp;
write(B).

Suppose the current values of accounts A and B are $1000 and $2000, respectively. Suppose also that the two transactions are executed one at a time in the order T1 followed by T2. This execution sequence appears in Figure 4.2. The final values of accounts A and B, after the execution in Figure 4.2 takes place, are $855 and $2145, respectively. Thus, the total amount of money in accounts A and B—that is, the sum A + B—is preserved after the execution of both transactions.
[image: image5.png]read(A)
A=A-50
write(A)
read(B)
B:=B+50
write(B)
commit

read(A)

temp := A % 0.1
A=A —temp
write(A)
read(B)

B :=B + temp
write(B)
commit

Figure 4.2 Schedule 1 — a serial schedule in which T; is followed by T

Similarly, if the transactions are executed one at a time in the order T2 followed by T1, then the corresponding execution sequence is that of Figure 4.3. Again, as expected, the sum A + B is preserved, and the final values of accounts A and B are $850 and $2150, respectively.
[image: image6.png]T %

read(A)
temp := A % 0.1
A=A —temp
write(A)
read(B)
B :=B + temp
write(B)
commit

read(A)

A=A-50

write(A)

read(B)

B:=B+50

write(B)

commit

Figure 4.3 Schedule 2 — a serial schedule in which T; is followed by T;

The execution sequences just described are called schedules. These schedules are serial: Each serial schedule consists of a sequence of instructions from various transactions, where the instructions belonging to one single transaction appear together in that schedule. Recalling a well-known formula from combinatorics, we note that, for a set of n transactions, there exist n

factorial (n!) different valid serial schedules.

Returning to our previous example, suppose that the two transactions are executed concurrently. One possible schedule appears in Figure 4.4. After this execution takes place, we arrive at the same state as the one in which the transactions are executed serially in the order T1 followed by T2. The sumA + B is indeed preserved.
Not all concurrent executions result in a correct state. To illustrate, consider the schedule of Figure 4.5. After the execution of this schedule, we arrive at a state where the final values of accounts A and B are $950 and $2100, respectively. This final state is an inconsistent state, since we have gained $50 in the process of the concurrent execution. Indeed, the sum A + B is not preserved by the execution of the two transactions.
If control of concurrent execution is left entirely to the operating system, many possible schedules, including ones that leave the database in an inconsistent state, such as the one just described, are possible. It is the job of the database system to ensure that any schedule that is executed will leave the database in a consistent state. The concurrency-control component of the database system carries out this task.
[image: image7.png]T T

read(A)

A=A-50

write(A)
read(A)
temp := A % 0.1
A=A —temp
write(A)

read(B)

B:=B+50

write(B)

commit
read(B)
B :=B + temp
write(B)
commit

Figure 4.4 Schedule 3 —a concurrent schedule equivalent to schedule 1

We can ensure consistency of the database under concurrent execution by making sure that any schedule that is executed has the same effect as a schedule that could have occurred without any concurrent execution. That is, the schedule should, in some sense, be equivalent to a serial schedule. Such schedules are called serializable schedules.
[image: image8.png]I T

read(A)

A=A-50
read(A)
temp := A % 0.1
A=A —temp
write(A)
read(B)

write(A)

read(B)

B:=B+50

write(B)

commit
B :=B + temp
write(B)
commit

Figure 4.5 Schedule 4 —a concurrent schedule resulting in an inconsistent state.

4.6 Serializability

Before we can consider how the concurrency-control component of the database system can ensure serializability, we consider how to determine when a schedule is serializable. Certainly, serial schedules are serializable, but if steps of multiple transactions are interleaved, it is harder to determine whether a schedule is serializable.
Since transactions are programs, it is difficult to determine exactly what operations a transaction performs and how operations of various transactions interact. For this reason,we shall not consider the various types of operations that a transaction can perform on a data item, but instead consider only two operations: read and write.
We assume that, between a read(Q) instruction and a write(Q) instruction on a data item Q, a transaction may perform an arbitrary sequence of operations on the copy of Q that is residing in the local buffer of the transaction. We therefore may show only read and write instructions in schedules, as we do for schedule 3 in Figure 4.6.

Conflict serializability: Let us consider a schedule S in which there are two consecutive instructions, I and J , of transactions Ti and Tj , respectively (i ≠ j). If I and J refer to different data items, then we can swap I and J without affecting the results of any instruction in the schedule. However, if I and J refer to the same data item Q, then the order of the two steps may matter. Since we are dealing with only read and write instructions, there are four cases that we need to consider:
1. I = read(Q), J = read(Q). The order of I and J does not matter, since the same value of Q is read by Ti and Tj , regardless of the order.

2. I = read(Q), J = write(Q). If I comes before J , then Ti does not read the value of Q that is written by Tj in instruction J . If J comes before I, then Ti reads the value of Q that is written by Tj. Thus, the order of I and J matters.
[image: image9.png]read(A)

write(A)
read(A)
write(A)
read(B)
write(B)
read(B)
write(B)

Figure 4.6 Schedule 3 —showing only the read and write instructions.

[image: image10.png]read(A)

write(A)

read(A)
read(B)

write(A)
write(B)

read(B)

write(B)

Figure 4.7 Schedule 5 —schedule 3 after swapping of a pair of instructions.

3. I = write(Q), J = read(Q). The order of I and J matters for reasons similar to those of the previous case.

4. I = write(Q), J = write(Q). Since both instructions are write operations, the order of these instructions does not affect either Ti or Tj . However, the value obtained by the next read(Q) instruction of S is affected, since the result of only the latter of the two write instructions is preserved in the database. If there is no other write(Q) instruction after I and J in S, then the order of I and J directly affects the final value of Q in the database state that results from schedule S.
We say that I and J conflict if they are operations by different transactions on the same data item, and at least one of these instructions is a write operation.
Swap the instructions to avoid conflicts. The result of swapping is shown below.

[image: image11.png]read(A)

write(A)

read(B)

write(B)
read(A)
write(A)
read(B)
write(B)

Figure 4.8 Schedule 6 — a serial schedule that is equivalent to schedule 3

The concept of conflict equivalence leads to the concept of conflict serializability. We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule. Thus, schedule 3 is conflict serializable, since it is conflict equivalent to the serial schedule 1.
Precedence graph: We now present a simple and efficient method for determining conflict serializability of a schedule. Consider a schedule S. We construct a directed graph, called a precedence graph, fromS. This graph consists of a pair G = (V, E), where V is a set of vertices and E is a set of edges. The set of vertices consists of all the transactions participating in the schedule. The set of edges consists of all edges Ti →Tj for which one of three conditions holds:

1. Ti executes write(Q) before Tj executes read(Q).

2. Ti executes read(Q) before Tj executes write(Q).

3. Ti executes write(Q) before Tj executes write(Q).

If an edge Ti → Tj exists in the precedence graph, then, in any serial schedule S_

equivalent to S, Ti must appear before Tj .
[image: image12.png]R

Figure 4.10 Precedence graph for (a) schedule 1 and (b) schedule 2

The precedence graph for schedule 4 appears in Figure 4.11. It contains the edge T1 →T2, because T1 executes read(A) before T2 executes write(A). It also contains the edge T2→T1, because T2 executes read(B) before T1 executes write(B).
[image: image13.png]Figure 4.11 Precedence graph for schedule 4

Topological sorting: A serializability order of the transactions can be obtained by finding a linear order consistent with the partial order of the precedence graph. This process is called topological sorting.
[image: image14.png]Figure 4.12

®) (©
lllustration of topological sorting

4.7 Transaction Isolation and Atomicity

We now address the effect of transaction failures during concurrent execution.
[image: image15.png]read(A)
write(A)

read(A)
commit
read(B)

Figure 4.14 Schedule 9, a nonrecoverable schedule.

If a transaction Ti fails, for whatever reason, we need to undo the effect of this transaction to ensure the atomicity property of the transaction. In a system that allows concurrent execution, the atomicity property requires that any transaction Tj that is dependent on Ti (that is, Tj has read data written by Ti) is also aborted. To achieve this, we need to place restrictions on the type of schedules permitted in the system. Following, we address the issue of what schedules are acceptable from the viewpoint of recovery from transaction failure.
4.7.1 Recoverable Schedules: Consider the partial schedule 9 in Figure 4.14, in which T7 is a transaction that performs only one instruction: read(A). We call this a partial schedule because we have not included a commit or abort operation for T6. Notice that T7 commits immediately after executing the read(A) instruction. Thus, T7 commits while T6 is still in the active state. Now suppose that T6 fails before it commits. T7 has read the value of data item A written by T6. Therefore, we say that T7 is dependent on T6. Because of this, we must abort T7 to ensure atomicity. However, T7 has already committed and cannot be aborted. Thus, we have a situation where it is impossible to recover correctly from the failure of T6. Schedule 9 is an example of a nonrecoverable schedule. A recoverable schedule is one where, for each pair of transactions Ti and Tj such that Tj reads a data item previously written by Ti , the commit operation of Ti appears before the commit operation of Tj . For the example of schedule 9 to be recoverable, T7 would have to delay committing until after T6 commits.
4.7.2 Cascade less Schedules: Even if a schedule is recoverable, to recover correctly from the failure of a transaction Ti , we may have to roll back several transactions. Such situations occur if transactions have read data written by Ti . As an illustration, consider the partial schedule of Figure 4.15. Transaction T8 writes a value of A that is read by transaction T9. Transaction T9 writes a value of A that is read by transaction T10. Suppose that, at this point, T8 fails. T8 must be rolled back. Since T9 is dependent on T8, T9 must be rolled back. Since T10 is dependent on T9, T10 must be rolled back.
[image: image16.png]Ts T Tio

read(A)
read(B)
write(4)
read(A)
write(4)
read(4)
abort

Figure 4.15 Schedule 10.

This phenomenon, in which a single transaction failure leads to a series of transaction

rollbacks, is called cascading rollback.
Cascading rollback is undesirable, since it leads to the undoing of a significant amount of work. It is desirable to restrict the schedules to those where cascading rollbacks cannot occur. Such schedules are called cascadeless schedules. Formally, a cascadeless schedule is one where, for each pair of transactions Ti and Tj such that Tj reads a data item previously written by Ti , the commit operation of Ti appears before the read operation of Tj . It is easy to verify that every cascadeless schedule is also recoverable.
4.8 Transaction Isolation Levels
To maintain data consistency transaction isolation levels are used. The isolation levels specified by the SQL standard are as follows:

• Serializable usually ensures serializable execution. However, some database systems implement this isolation level in a manner that may, in certain cases, allow nonserializable executions.

• Repeatable read allows only committed data to be read and further requires that, between two reads of a data item by a transaction, no other transaction is allowed to update it.

• Read committed allows only committed data to be read, but does not require repeatable reads. For instance, between two reads of a data item by the transaction, another transaction may have updated the data item and committed.

• Read uncommitted allows uncommitted data to be read. It is the lowest isolation level allowed by SQL.
All the isolation levels above additionally disallow dirty writes, that is, they disallow writes to a data item that has already been written by another transaction that has not yet committed or aborted.
4.9 Implementation of Isolation Levels

There are various concurrency-control policies that we can use to ensure that, even when multiple transactions are executed concurrently, only acceptable schedules are generated. A transaction acquires a lock on the entire database before it starts and releases the lock after it has committed. While a transaction holds a lock, no other transaction is allowed to acquire the lock, and all must therefore wait for the lock to be released.

As a result of the locking policy, only one transaction can execute at a time. Therefore, only serial schedules are generated. These are trivially serializable, and it is easy to verify that they are recoverable and cascadeless as well.
4.9.1 Locking

Instead of locking the entire database, a transaction could, instead, lock only those data items that it accesses. The two-phase locking protocol, a simple, widely used technique that ensures serializability. Stated simply, two-phase locking requires a transaction to have two phases, one where it acquires locks but does not release any, and a second phase where the transaction releases locks but does not acquire any. (In practice, locks are usually released only when the transaction completes its execution and has been either committed or aborted.)

Further improvements to locking result if we have two kinds of locks: shared and exclusive. Shared locks are used for data that the transaction reads and exclusive locks are used for those it writes. Many transactions can hold shared locks on the same data item at the same time, but a transaction is allowed an exclusive lock on a data item only if no other transaction holds any lock.
4.9.2 Timestamps

Another category of techniques for the implementation of isolation assigns each transaction a timestamp, typically when it begins. For each data item, the system keeps two timestamps. The read timestamp of a data item holds the largest (that is, the most recent) timestamp of those transactions that read the data item. The write timestamp of a data item holds the timestamp of the transaction that wrote the current value of the data item. Timestamps are used to ensure that transactions access each data item in order otherwise transactions are aborted and restarted with a new timestamp.
4.9.3 Multiple Versions and Snapshot Isolation

By maintaining more than one version of a data item, it is possible to allow a transaction to read an old version of a data item rather than a newer version written by an uncommitted transaction or by a transaction that should come later in the serialization order. There are a variety of multi version concurrency control techniques. One in particular, called snapshot isolation, is widely used in practice.
In snapshot isolation, we can imagine that each transaction is given its own version, or snapshot, of the database when it begins. It reads data from this private version and is thus isolated from the updates made by other transactions. If the transaction updates the database, that update appears only in its own version, not in the actual database itself. Information about these updates is saved so that the updates can be applied to the “real” database if the transaction commits.
SHORT ANSWERS
• A transaction is a unit of program execution that accesses and possibly updates various data items.
• Transactions are required to have the ACID properties: atomicity, consistency,

isolation, and durability.

1. Atomicity ensures that either all the effects of a transaction are reflected in the database, or none are; a failure cannot leave the database in a state where a transaction is partially executed.

2. Consistency ensures that, if the database is initially consistent, the execution of the transaction (by itself) leaves the database in a consistent state.

3. Isolation ensures that concurrently executing transactions are isolated from one another, so that each has the impression that no other transaction is executing concurrently with it.

4. Durability ensures that, once a transaction has been committed, that transaction’s updates do not get lost, even if there is a system failure.

• Concurrent execution of transactions improves throughput of transactions and system utilization, and also reduces waiting time of transactions.

• The various types of storage in a computer are volatile storage, nonvolatile storage, and stable storage. Data in volatile storage, such as in RAM, are lost when the computer crashes. Data in nonvolatile storage, such as disk, are not lost when the computer crashes, but may occasionally be lost because of failures such as disk crashes. Data in stable storage are never lost.

• Stable storage that must be accessible online is approximated with mirrored disks, or other forms of RAID,which provide redundant data storage. Offline, or archival, stable storage may consist of multiple tape copies of data stored in physically secure locations.

• When several transactions execute concurrently on the database, the consistency of data may no longer be preserved. It is therefore necessary for the system to control the interaction among the concurrent transactions.

· Since a transaction is a unit that preserves consistency, a serial execution of transactions guarantees that consistency is preserved.

· A schedule captures the key actions of transactions that affect concurrent execution, such as read and write operations, while abstracting away internal details of the execution of the transaction.

· We require that any schedule produced by concurrent processing of a set of transactionswill have an effect equivalent to a schedule produced when these transactions are run serially in some order.

· A system that guarantees this property is said to ensure serializability.

· There are several different notions of equivalence leading to the concepts of conflict serializability and view serializability.

• Serializability of schedules generated by concurrently executing transactions can be ensured through one of a variety of mechanisms called concurrencycontrol policies.

• We can test a given schedule for conflict serializability by constructing a precedence graph for the schedule, and by searching for absence of cycles in the graph. However, there are more efficient concurrency-control policies for ensuring serializability.

• Schedules must be recoverable, to make sure that if transaction a sees the effects of transaction b, and b then aborts, then a also gets aborted.

• Schedules should preferably be cascadeless, so that the abort of a transaction does not result in cascading aborts of other transactions. Cascadelessness is ensured by allowing transactions to only read committed data.

• The concurrency-control–management component of the database is responsible for handling the concurrency-control policies.
4.10 CONCURRENCY CONTROL

Lock-Based Protocols: One way to ensure isolation is to require that data items be accessed in a mutually exclusive manner; that is, while one transaction is accessing a data item, no other transaction can modify that data item. The most common method used to implement this requirement is to allow a transaction to access a data item only if it is currently holding a lock on that item.

4.10.1 Locks: The two modes of locks are:

1. Shared. If a transaction Ti has obtained a shared-mode lock (denoted by S) on item Q, then Ti can read, but cannot write, Q.

2. Exclusive. If a transaction Ti has obtained an exclusive-mode lock (denoted by X) on item Q, then Ti can both read and write Q.
[image: image17.png]S X
S | true | false

X | false | false

Figure 4.1 Lock-compatibility matrix comp.

When transactions request locks on data items, the concurrency control manager grants the locks based on their compatibility. Any transactions can apply shared locks on the same data item. When shared locks are applied, the transactions can read the data. No other locks can be applied on exclusive lock. The, transaction Ti is made to wait until all incompatible locks held by other transactions have been released.
[image: image18.png]T T concurreny-control manager
lock-X(B)
grant-X(B, Ty)
read(B)
B:=B—50
write(B)
unlock(B)
lock-S(A)
grant-S(A, Tp)
read(A)
unlock(A)
lock-S(B)
grant-S(B, T»)
read(B)
unlock(B)
display(A + B)
lock-X(A)
grant-X(A, Ty)
read(A)
A=A-50
write(A)
unlock(A)

Figure 4.2 Schedule 1.

Improper sharing of resources i.e data items leads to a situation called deadlock. When deadlock occurs, the system must roll back one of the two transactions. Once a transaction has been rolled back, the data items that were locked by that transaction are unlocked. These data items are then available to the other transaction, which can continue with its execution.
[image: image19.png]lock-X(B)

read(B)

B:=B—50

write(B)
lock-S(A)
read(A)
lock-S(B)

lock-X(A)

Figure 4.3 schedule with Dead Lock

We shall require that each transaction in the system follow a set of rules, called a locking protocol, indicating when a transaction may lock and unlock each of the data items.
4.10.2 Granting of Locks:

When a transaction requests a lock on a data item in a particular mode, and no other transaction has a lock on the same data item in a conflicting mode, the lock can be granted. However, care must be taken to avoid the following scenario.
Starvation: Suppose a transaction T2 has a shared-mode lock on a data item, and another transaction T1 requests an exclusive-mode lock on the data item. Clearly, T1 has to wait for T2 to release the shared-mode lock. Meanwhile, a transaction T3 may request a shared-mode lock on the same data item. The lock request is compatible with the lock granted to T2, so T3 may be granted the shared-mode lock. At this point T2 may release the lock, but still T1 has to wait for T3 to finish. But again, there may be a new transaction T4 that requests a shared-mode lock on the same data item, and is granted the lock before T3 releases it. In fact, it is possible that there is a sequence of transactions that each requests a shared-mode lock on the data item, and each transaction releases the lock a short while after it is granted, but T1 never gets the exclusive-mode lock on the data item. The transaction T1 may never make progress, and is said to be starved.

Avoiding Starvation: When a transaction Ti requests a lock on a data item Q in a particular mode M, the concurrency-control manager grants the lock provided that:

1. There is no other transaction holding a lock on Q in a mode that conflicts with M.

2. There is no other transaction that is waiting for a lock on Q and that made its lock request before Ti .

Thus, a lock request will never get blocked by a lock request that is made later.
4.10.3 The Two-Phase Locking Protocol

One protocol that ensures serializability is the two-phase locking protocol. This

protocol requires that each transaction issue lock and unlock requests in two phases:

1. Growing phase. A transaction may obtain locks, but may not release any lock.

2. Shrinking phase. A transaction may release locks, but may not obtain any new locks.
Initially, a transaction is in the growing phase. The transaction acquires locks as needed. Once the transaction releases a lock, it enters the shrinking phase, and it can issue no more lock requests. The point in the schedule where the transaction has obtained its final lock (the end of its growing phase) is called the lock point of the transaction. Two-phase locking does not ensure freedom from deadlock. Cascading rollbacks can be avoided by a modification of two-phase locking called the strict two-phase locking protocol. Another variant of two-phase locking is the rigorous two-phase locking protocol, which requires that all locks be held until the transaction commits.
[image: image20.png]T5 Te T;

lock-X(A)
read(A)
lock-S(B)
read(B)
write(A)
unlock(A)
unlockB))
lock-X(A)
read(A)
write(A)
unlock(A)
lock-s(A)
read(A)

Figure 4.4 Partial schedule under two-phase locking.

Lock Conversions: This observation leads us to a refinement of the basic two-phase locking protocol, in which lock conversions are allowed. We shall provide a mechanism for upgrading a shared lock to an exclusive lock, and downgrading an exclusive lock to a shared lock. Lock conversion cannot be allowed arbitrarily. Rather, upgrading can take place in only the growing phase, whereas downgrading can take place in only the shrinking phase.
[image: image21.png]lock-S(a1)

lock-S(a1)
lock-S(a2)

lock-S(az)
lock-S(a3)
lock-S(az)

unlock(aq)

unlock(az)
lock-S(a,,)
upgrade(a;)

Figure 4.5 schedule with a lock conversion.

• When a transaction Ti issues a read(Q) operation, the system issues a lock-S(Q) instruction followed by the read(Q) instruction.

• When Ti issues a write(Q) operation, the system checks to see whether Ti already holds a shared lock on Q. If it does, then the system issues an upgrade(Q) instruction, followed by the write(Q) instruction. Otherwise, the system issues a lock-X(Q) instruction, followed by the write(Q) instruction.

• All locks obtained by a transaction are unlocked after that transaction commits or aborts.
4.10.4 Implementation of Locking: A lock manager can be implemented as a process that receives messages from transactions and sends messages in reply. The lock-manager process replies to lock-request messages with lock-grant messages, or with messages requesting rollback of the transaction . Unlock messages require only an acknowledgment in response, but may result in a grant message to another waiting transaction.
The lock manager uses this data structure: For each data item that is currently locked, it maintains a linked list of records, one for each request, in the order in which the requests arrived. It uses a hash table, indexed on the name of a data item, to find the linked list (if any) for a data item; this table is called the lock table. Each record of the linked list for a data item notes which transaction made the request, and what lock mode it requested. The record also notes if the request has currently been granted.

The lock manager processes requests this way:
• When a lock request message arrives, it adds a record to the end of the linked list for the data item, if the linked list is present. Otherwise it creates a new linked list, containing only the record for the request.
It always grants a lock request on a data item that is not currently locked. But if the transaction requests a lock on an item on which a lock is currently held, the lock manager grants the request only if it is compatible with the locks that are currently held, and all earlier requests have been granted already. Otherwise the request has to wait.
• When the lock manager receives an unlock message from a transaction, it deletes the record for that data item in the linked list corresponding to that transaction. It tests the record that follows, if any, as described in the previous paragraph, to see if that request can now be granted. If it can, the lock manager grants that request, and processes the record following it, if any, similarly, and so on.
• If a transaction aborts, the lock manager deletes any waiting request made by the transaction. Once the database system has taken appropriate actions to undo the transaction, it releases all locks held by the aborted transaction.

[image: image22.png]| 12

™

Figure 4.6 Lock table.

4.10.5 Graph-Based Protocols: To have the prior knowledge about the order in which the database items will be accessed, it is possible to construct locking protocols that are not two phase, but that, nevertheless, ensure conflict serializability.

To acquire such prior knowledge, we impose a partial ordering→on the set

D = {d1, d2, . . . , dh} of all data items. If di → dj , then any transaction accessing the result of either the logical or the physical organization of the data, or it may be imposed solely for the purpose of concurrency control.
Tree Protocol: In the tree protocol, the only lock instruction allowed is lock-X. Each transaction

Ti can lock a data item at most once, and must observe the following rules:

1. The first lock by Ti may be on any data item.

2. Subsequently, a data item Q can be locked by Ti only if the parent of Q is

currently locked by Ti .

3. Data items may be unlocked at any time.

4. A data item that has been locked and unlocked by Ti cannot subsequently

be relocked by Ti .
All schedules that are legal under the tree protocol are conflict serializable. To illustrate this protocol, consider the database graph of Figure 4.7. The following four transactions follow the tree protocol on this graph. We show only the lock and unlock instructions:
[image: image23.png]Figure 4.7 Tree-structured database graph.

T10: lock-X(B); lock-X(E); lock-X(D); unlock(B); unlock(E); lock-X(G);unlock(D); unlock(G).

T11: lock-X(D); lock-X(H); unlock(D); unlock(H).

T12: lock-X(B); lock-X(E); unlock(E); unlock(B).

T13: lock-X(D); lock-X(H); unlock(D); unlock(H).

[image: image24.png]Tip Tn T Tis
lock-X(B)
lock-X(D)
lock-x(H)
unlock(D)
lock-X(E)
lock-x(D)
unlock(B)
unlock(E)
lock-X(B)
lock-X(E)
unlock(H)
lock-X(G)
unlock(D) oDy
lock-X(
lock-x(H)
unlock(D)
unlock(H)
unlock(E)
unlock(B)
unlock(G)

Figure 4.8 Serializable schedule under the tree protocol.

The tree-locking protocol has an advantage over the two-phase locking protocol in that, unlike two-phase locking, it is deadlock-free, so no rollbacks are required. The tree-locking protocol has another advantage over the two-phase locking protocol in that unlocking may occur earlier. Earlier unlocking may lead to shorter waiting times, and to an increase in concurrency.
However, the protocol has the disadvantage that, in some cases, a transaction may have to lock data items that it does not access.
4.11 Dead Lock Handling
4.11.0 Dead Lock: A system is in a deadlock state if there exists a set of transactions such that every transaction in the set is waiting for another transaction in the set. More precisely, there exists a set of waiting transactions {T0, T1, . . . , Tn} such that T0 is waiting for a data item that T1 holds, and T1 is waiting for a data item that T2 holds, and . . . , and Tn−1 is waiting for a data item that Tn holds, and Tn is waiting for a data item that T0 holds. None of the transactions can make progress in such a situation.
There are two principal methods for dealing with the deadlock problem. We can use a deadlock prevention protocol to ensure that the system will never enter a deadlock state. Alternatively, we can allow the system to enter a deadlock state, and then try to recover by using a deadlock detection and deadlock recovery scheme.
4.11.1 Dead Lock Prevention: Various locking protocols do not guard against deadlocks. One way to prevent deadlock is to use an ordering of data items, and to request locks in a sequence consistent with the ordering.
Another way to prevent deadlock is to use preemption and transaction rollbacks. To control the preemption, we assign a unique timestamp to each transaction. The system uses these timestamps to decide whether a transaction should wait or roll back. If a transaction is rolled back, it retains its old timestamp when restarted.
Two different deadlock-prevention schemes using timestamps have been proposed:

1. The wait–die scheme is a non preemptive technique. When transaction Ti requests a data item currently held by Tj , Ti is allowed to wait only if it has a timestamp smaller than that of Tj (that is, Ti is older than Tj). Otherwise, Ti is rolled back (dies).

2. The wound–wait scheme is a preemptive technique. It is a counterpart to the wait–die scheme. When transaction Ti requests a data item currently held by Tj , Ti is allowed to wait only if it has a timestamp larger than that of Tj (that is, Ti is younger than Tj). Otherwise, Tj is rolled back (Tj is wounded by Ti).
4.11.2 Deadlock Detection: Deadlocks can be described precisely in terms of a directed graph called a waitfor graph. This graph consists of a pair G = (V, E), where V is a set of vertices and

E is a set of edges. The set of vertices consists of all the transactions in the system.

Each element in the set E of edges is an ordered pair Ti → Tj. If Ti → Tj is in E, then there is a directed edge from transaction Ti to Tj , implying that transaction Ti is waiting for transaction Tj to release a data item that it needs.

When transaction Ti requests a data item currently being held by transaction Tj , then the edge Ti → Tj is inserted in the wait-for graph. This edge is removed only when transaction Tj is no longer holding a data item needed by transaction Ti .

A deadlock exists in the system if and only if the wait-for graph contains a cycle. Each transaction involved in the cycle is said to be deadlocked. To detect deadlocks, the system needs to maintain the wait-for graph, and periodically to invoke an algorithm that searches for a cycle in the graph.

To illustrate these concepts, consider thewait-for graph in Figure 4.9, which depicts the following situation:

• Transaction T17 is waiting for transactions T18 and T19.

• Transaction T19 is waiting for transaction T18.

• Transaction T18 is waiting for transaction T20.
Since the graph has no cycle, the system is not in a deadlock state.
[image: image25.png]e‘: N e‘?e

Figure 4.9 Wait-for graph with no cycle. Figure 4.10 Wait-for graph with a cycle.

Suppose now that transaction T20 is requesting an item held by T19. The edge T20 → T19 is added to the wait-for graph, resulting in the new system state in Figure 4.10. This time, the graph contains the cycle: T18 →T20 →T19 →T18

implying that transactions T18, T19, and T20 are all deadlocked.
4.11.3 Recovery from Deadlock: When a detection algorithm determines that a deadlock exists, the system must recover from the deadlock. The most common solution is to roll back one or more transactions to break the deadlock. Three actions need to be taken:

1. Selection of a victim. Given a set of deadlocked transactions, we must determine which transaction (or transactions) to roll back to break the deadlock. We should roll back those transactions that will incur the minimum cost. Many factors may determine the cost of a rollback, including:

a. How long the transaction has computed, and how much longer the transaction will compute before it completes its designated task.

b. How many data items the transaction has used.

c. How many more data items the transaction needs for it to complete.

d. How many transactions will be involved in the rollback.
2. Rollback. The simplest solution is a total rollback: Abort the transaction and then restart it. However, it is more effective to roll back the transaction only as far as necessary to break the deadlock. Such partial rollback requires the system to maintain additional information about the state of all the running transactions. Specifically, the sequence of lock requests/grants and updates performed by the transaction needs to be recorded. The selected transaction must be rolled back to the point where it obtained the first of these locks, undoing all actions it took after that point.
3. Starvation. In a system where the selection of victims is based primarily on cost factors, it may happen that the same transaction is always picked as a victim. As a result, this transaction never completes its designated task, thus there is starvation. We must ensure that a transaction can be picked as a victim only a (small) finite number of times. The most common solution

is to include the number of rollbacks in the cost factor.
4.12 Multiple Granularity

4.12.0 Multiple levels of granularity: There are circumstances where it would be advantageous to group several data items, and to treat them as one aggregate data item for purposes of working, resulting in multiple levels of granularity. We allow data items of various sizes, and define a hierarchy of data items, where the small items are nested within larger ones. Such a hierarchy can be represented graphically as a tree. Locks are acquired in root-to-leaf order; they are released in leaf-to-root order. The protocol ensures serializability, but not freedom from deadlock.

As an illustration, consider the tree of Figure 4.11, which consists of four levels of nodes. The highest level represents the entire database. Below it are nodes of type area; the database consists of exactly these areas. Each area in turn has nodes of type file as its children. Each area contains exactly those files that are its child nodes. No file is in more than one area. Finally, each file has nodes of type record. As before, the file consists of exactly those records that are its child nodes, and no record can be present in more than one file.

Each node in the tree can be locked individually. As we did in the two phase locking protocol, we shall use shared and exclusive lock modes. When a transaction locks a node, in either shared or exclusive mode, the transaction also has implicitly locked all the descendants of that node in the same lock mode.

For example, if transaction Ti gets an explicit lock on file Fc of Figure 4.11, in exclusive mode, then it has an implicit lock in exclusive mode on all the records belonging to that file. It does not need to lock the individual records of Fc explicitly.

[image: image26.png]o

Figure 4.1 Granularity hierarchy.

Intention Locks: If a node is locked in an intention mode, explicit locking is done at a lower level of the tree (that is, at a finer granularity). Intention locks are put on all the ancestors of a node before that node is locked explicitly.
There is an intention mode associated with shared mode, and there is on with exclusive mode. If a node is locked in intention-shared (IS) mode, explicit locking is being done at a lower level of the tree, but with only shared-mode locks. Similarly, if a node is locked in intention-exclusive (IX) mode, then explicit locking is being done at a lower level, with exclusive-mode or shared-mode locks. Finally, if a node is locked in shared and intention-exclusive (SIX) mode, the subtree rooted by that node is locked explicitly in shared mode, and that explicit locking is being done at a lower level with exclusive-mode locks.
[image: image27.png]15 X S SIX. X
1S [tue [true |tue |tue | false
IX |tue |tue |false |false | false
S |tue |[false [tmue |false |false

SIX |tue |fae |false |false | false
X |false |false |false |false | false

Figure 412 Compatibility matrix.

The multiple-granularity locking protocol uses these lock modes to ensure serializability. It requires that a transaction Ti that attempts to lock a node Q must follow these rules:

1. Transaction Ti must observe the lock-compatibility function of Figure 4.12.

2. Transaction Ti must lock the root of the tree first, and can lock it in any mode.

3. Transaction Ti can lock a node Q in S or IS mode only if Ti currently has the parent of Q locked in either IX or IS mode.

4. Transaction Ti can lock a node Q in X, SIX, or IX mode only if Ti currently has the parent of Q locked in either IX or SIX mode.

5. Transaction Ti can lock a node only if Ti has not previously unlocked any node (that is, Ti is two phase).

6. Transaction Ti can unlock a node Q only if Ti currently has none of the children of Q locked.

Observe that the multiple-granularity protocol requires that locks be acquired in top-down (root-to-leaf) order, whereas locks must be released in bottom-up (leaf to-root) order.
This protocol enhances concurrency and reduces lock overhead. It is particularly useful in applications that include a mix of:

• Short transactions that access only a few data items.

• Long transactions that produce reports from an entire file or set of files.
4.13 Timestamp-Based Protocols
Another method for determining the serializability order is to select an ordering among transactions in advance. The most common method for doing so is to use a timestamp-ordering scheme.
4.13.0 Timestamps: With each transaction Ti in the system, we associate a unique fixed timestamp, denoted by TS(Ti). This timestamp is assigned by the database system before the transaction Ti starts execution. If a transaction Ti has been assigned timestamp TS(Ti), and a new transaction Tj enters the system, then TS(Ti) < TS(Tj). There are two simple methods for implementing this scheme:
1. Use the value of the system clock as the timestamp; that is, a transaction’s timestamp is equal to the value of the clock when the transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has been assigned; that is, a transaction’s timestamp is equal to the value of the counter when the transaction enters the system.
The timestamps of the transactions determine the serializability order. Thus, if TS(Ti) < TS(Tj), then the system must ensure that the produced schedule is equivalent to a serial schedule in which transaction Ti appears before transaction Tj. To implement this scheme, we associate with each data item Q two timestamp values:

• W-timestamp(Q) denotes the largest timestamp of any transaction that executed write(Q) successfully.

• R-timestamp(Q) denotes the largest timestamp of any transaction that executed read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q) instruction is executed.
4.13.1 The Timestamp-Ordering Protocol: The timestamp-ordering protocol ensures that any conflicting read and write operations are executed in timestamp order. This protocol operates as follows:

1. Suppose that transaction Ti issues read(Q).

a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was already overwritten. Hence, the read operation is rejected, and Ti is rolled back.

b. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

2. Suppose that transaction Ti issues write(Q).

a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously, and the system assumed that that value would never be produced. Hence, the system rejects the write operation and rolls Ti back.

b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. Hence, the system rejects this write operation and rolls Ti back.

c. Otherwise, the system executes write operation and sets W-timestamp(Q) to TS(Ti).
If a transaction Ti is rolled back by the concurrency-control scheme as result of issuance of either a read or write operation, the system assigns it a new timestamp and restarts it.
The timestamp-ordering protocol ensures conflict serializability. This is because conflicting operations are processed in timestamp order.
4.13.2 Thomas’ Write Rule: A modification to the timestamp-ordering protocol that allows greater potential concurrency than does the protocol. A modified version of the timestamp-ordering protocol in which obsolete write operations can be ignored under certain circumstances. The protocol rules for read operations remain unchanged. The protocol rules for write operations, however, are slightly different from the timestamp-ordering protocol.
The modification to the timestamp-ordering protocol, called Thomas’ write rule, is this: Suppose that transaction Ti issues write(Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was previously needed, and it had been assumed that the value would never be produced. Hence, the system rejects the write operation and rolls Ti back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. Hence, this write operation can be ignored.

3. Otherwise, the system executes the write operation and setsW-timestamp(Q) to TS(Ti).
4.14 Validation-Based Protocols
A validation scheme is an appropriate concurrency-control method in cases where a majority of transactions are read-only transactions, and thus the rate of conflicts among these transactions is low. A unique fixed timestamp is associated with each transaction in the system. The serializability order is determined by the timestamp of the transaction. A transaction in this scheme is never delayed. It must, however, pass a validation test to complete. If it does not pass the validation test, the system rolls it back to its initial state.

The validation protocol requires that each transaction Ti executes in two or three different phases in its lifetime, depending on whether it is a read-only or an update transaction. The phases are, in order:
1. Read phase. During this phase, the system executes transaction Ti. It reads the values of the various data items and stores them in variables local to Ti. It performs all write operations on temporary local variables, without updates of the actual database.

2. Validation phase. The validation test (described below) is applied to transaction Ti . This determines whether Ti is allowed to proceed to the write phase without causing a violation of serializability. If a transaction fails the validation test, the system aborts the transaction.

3. Write phase. If the validation test succeeds for transaction Ti, the temporary local variables that hold the results of any write operations performed by Ti are copied to the database. Read-only transactions omit this phase.
Each transaction must go through the phases in the order shown. However, phases of concurrently executing transactions can be interleaved. To perform the validation test, we need to know when the various phases of transactions took place. We shall, theefore, associate three different timestamps with each transaction Ti :
1. Start(Ti), the time when Ti started its execution.

2. Validation(Ti), the time when Ti finished its read phase and started its validation phase.

3. Finish(Ti), the time when Ti finished its write phase.
The validation test for transaction Ti requires that, for all transactions Tk with TS(Tk) < TS(Ti), one of the following two conditions must hold:

1. Finish(Tk) < Start(Ti). Since Tk completes its execution before Ti started, the serializability order is indeed maintained.

2. The set of data itemswritten by Tk does not intersectwith the set of data items read by Ti, and Tk completes its write phase before Ti starts its validation phase (Start(Ti) < Finish(Tk) < Validation(Ti)). This condition ensures that the writes of Tk and Ti do not overlap. Since the writes of Tk do not affect the read of Ti , and since Ti cannot affect the read of Tk , the serializability order is indeed maintained.

[image: image28.png]read(B)

read(B)
B:=B—50
read(4)
A=A+50

read(4)

< validate>

display(4 + B)
< validate>
write(B)
write(4)

Figure 4.13 Schedule 6, a schedule produced by using validation.

This validation scheme is called the optimistic concurrency-control scheme since transactions execute optimistically, assuming they will be able to finish execution and validate at the end.
4.15 Multi version Schemes
A multiversion concurrency-control scheme is based on the creation of a new version of a data item for each transaction that writes that item. When a read operation is issued, the system selects one of the versions to be read. The concurrency-control scheme ensures that the version to be read is selected in a manner that ensures serializability, by using timestamps. A read operation always succeeds.

· In multiversion timestamp ordering, a write operation may result in the rollback of the transaction.

· In multiversion two-phase locking, write operations may result in a lock wait or, possibly, in deadlock.
With each data itemQ, a sequence of versions<Q1, Q2, . . . , Qm>is associated. Each version Qk contains three data fields:

• Content is the value of version Qk .

• W-timestamp(Qk) is the timestamp of the transaction that created version Qk .

• R-timestamp(Qk) is the largest timestamp of any transaction that successfully read version Qk .
4.16 Snapshot Isolation
Snapshot isolation is a multiversion concurrency-control protocol based on validation, which, unlike multiversion two-phase locking, does not require transactions to be declared as read-only or update. Snapshot isolation does not guarantee serializability, but is nevertheless supported by many database systems.
4.17 Recovery System
4.15.0 Failure Classification: Failure are of following types:

• Transaction failure. There are two types of errors that may cause a transaction to fail:

• Logical error. The transaction can no longer continue with its normal execution because of some internal condition, such as bad input, data not found, overflow, or resource limit exceeded.

• System error. The system has entered an undesirable state (for example, deadlock).
• System crash. There is a hardware malfunction, or a bug in the database software or the operating system, that causes the loss of the content of volatile storage, and brings transaction processing to a halt.
• Disk failure. A disk block loses its content as a result of either a head crash or failure during a data-transfer operation. Copies of the data on other disks, or archival backups on tertiary media, such as DVD or tapes, are used to recover from the failure.
4.15.1 Storage: Three categories of storage media are:
• Volatile storage

• Nonvolatile storage

• Stable storage
Stable-Storage Implementation: To implement stable storage, we need to replicate the needed information in several nonvolatile storage media (usually disk)with independent failure modes, and to update the information in a controlled manner to ensure that failure during data transfer does not damage the needed information. RAID systems, however, cannot guard against data loss due to disasters such as fires or flooding. Remote back up is implemented in real time applications.
Block transfer between memory and disk storage can result in:

• Successful completion. The transferred information arrived safely at its destination.

• Partial failure. A failure occurred in the midst of transfer, and the destination block has incorrect information.

• Total failure. The failure occurred sufficiently early during the transfer that the destination block remains intact.
Data Access: Block movements between disk and main memory are initiated through thefollowing two operations:

1. input(B) transfers the physical block B to main memory.

2. output(B) transfers the buffer block B to the disk, and replaces the appropriate physical block there.

[image: image29.png]input(A)

output(B)

disk

‘main memory

Figure 4.14 Block storage operations.

We transfer data by these two operations:

1. read(X) assigns the value of data item X to the local variable xi. It executes this operation as follows:

a. If block BX on which X resides is not in main memory, it issues input(BX).

b. It assigns to xi the value of X from the buffer block.

2. write(X) assigns the value of local variable xi to data item X in the buffer block. It executes this operation as follows:

a. If block BX on which X resides is not in main memory, it issues input(BX).

b. It assigns the value of xi to X in buffer BX.
4.18 Recovery and Atomicity
In case of failure, the state of the database system may no longer be consistent; that is, it may not reflect a state of the world that the database is supposed to capture. To preserve consistency, we require that each transaction be atomic. It is the responsibility of the recovery scheme to ensure the atomicity and durability property.
4.18.1 Log Records: In log-based schemes, all updates are recorded on a log, which must be kept in stable storage. A transaction is considered to have committed when its last log record, which is the commit log record for the transaction, has been output to stable storage.
There are several types of log records. An update log record describes a single database write. It has these fields:

• Transaction identifier, which is the unique identifier of the transaction that performed the write operation.

• Data-item identifier, which is the unique identifier of the data item written. Typically, it is the location on disk of the data item, consisting of the block identifier of the block on which the data item resides, and an offset within the block.

• Old value, which is the value of the data item prior to the write.

• New value, which is the value that the data item will have after the write.

We represent an update log record as<Ti , Xj , V1, V2>, indicating that transaction Ti has performed a write on data item Xj . Xj had value V1 before the write, and has value V2 after the write.

Among the types of log records are:

• <Ti start>. Transaction Ti has started.

• <Ti commit>. Transaction Ti has committed.

• <Ti abort>. Transaction Ti has aborted.

4.18.2 Database Modification: As we noted earlier, a transaction creates a log record prior to modifying the database. The log records allow the system to undo changes made by a transaction in the event that the transaction must be aborted; they allow the system also to

redo changes made by a transaction if the transaction has committed but the system crashed before those changes could be stored in the database on disk. In order for us to understand the role of these log records in recovery, we need to consider the steps a transaction takes in modifying a data item:

1. The transaction performs some computations in its own private part of main memory.

2. The transaction modifies the data block in the disk buffer in main memory holding the data item.

3. The database system executes the output operation that writes the data block to disk.
If a transaction does not modify the database until it has committed, it is said to use the deferred-modification technique. If database modifications occur while the transaction is still active, the transaction is said to use the immediate-modification technique.
A recovery algorithm must take into account a variety of factors, including:

• The possibility that a transaction may have committed although some of its database modifications exist only in the disk buffer in main memory and not in the database on disk.

• The possibility that a transaction may have modified the database while in the active state and, as a result of a subsequent failure, may need to abort.
• Undo using a log record sets the data item specified in the log record to the old value.

• Redo using a log record sets the data item specified in the log record to the new value.
4.18.3. Concurrency Control and Recovery: If the concurrency control scheme allows a data item X that has been modified by a transaction T1 to be further modified by another transaction T2 before T1 commits, then undoing the effects of T1 by restoring the old value of X (before T1 updated X) would also undo the effects of T2. To avoid such situations, recovery algorithms usually require that if a data item has been modified by a transaction, no other transaction can modify the data item until the first transaction commits or aborts. This requirement can be ensured by acquiring an exclusive lock.

4.18.4 Transaction Commit: We say that a transaction has committed when its commit log record, which is the last log record of the transaction, has been output to stable storage; at that point all earlier log records have already been output to stable storage. Thus, there is enough information in the log to ensure that even if there is a system crash, the updates of the transaction can be redone. If a system crash occurs before a log record < Ti commit> is output to stable storage, transaction Ti will be rolled back.
4.18.5 Using the Log to Redo and Undo Transactions: Using the log, the system can handle any failure that does not result in the loss of information in nonvolatile storage. The recovery scheme uses two recovery procedures. Both these procedures make use of the log to find the set of data items updated by each transaction Ti , and their respective old and new values.

• redo(Ti) sets the value of all data items updated by transaction Ti to the new values.
• undo(Ti) restores the value of all data items updated by transaction Ti to the old values.
After a system crash has occurred, the system consults the log to determine which transactions need to be redone, and which need to be undone so as to ensure atomicity.

• Transaction Ti needs to be undone if the log contains the record <Ti start>, but does not contain either the record <Ti commit>or the record <Ti abort>.

• Transaction Ti needs to be redone if the log contains the record<Ti start>and either the record <Ti commit> or the record <Ti abort>. Itmay seem strange to redo Ti if the record <Ti abort> is in the log.
4.18.6 Checkpoints: When a system crash occurs, we must consult the log to determine those transactions that need to be redone and those that need to be undone. In principle, we need to search the entire log to determine this information. There are two major difficulties with this approach:

1. The search process is time-consuming.

2. Most of the transactions that, according to our algorithm, need to be redone have already written their updates into the database. Although redoing them will cause no harm, it will nevertheless cause recovery to take longer.

To reduce these types of overhead, we introduce checkpoints.

A checkpoint is performed as follows:

1. Output onto stable storage all log records currently residing in main memory.

2. Output to the disk all modified buffer blocks.

3. Output onto stable storage a log record of the form <checkpoint L>, where L is a list of transactions active at the time of the checkpoint.
The presence of a <checkpoint L> record in the log allows the system to streamline its recovery procedure.

The redo or undo operations need to be applied only to transactions in L, and to all transactions that started execution after the <checkpoint L> record was written to the log. Let us denote this set of transactions as T.

• For all transactions Tk in T that have no <Tk commit> record or <Tk abort> record in the log, execute undo(Tk).

• For all transactions Tk in T such that either the record <Tk commit> or the record <Tk abort> appears in the log, execute redo(Tk).
A fuzzy checkpoint is a checkpoint where transactions are allowed to perform updates even while buffer blocks are being written out.
4.19 Recovery Algorithm
The recovery algorithm requires that a data item that has been updated by an uncommitted transaction cannot be modified by any other transaction, until the first transaction has either committed or aborted.
4.19.1 Transaction Rollback: First consider transaction rollback during normal operation (that is, not duringrecovery from a system crash).Rollback of a transaction Ti is performed as follows:

1. The log is scanned backward, and for each log record of Ti of the form <Ti , Xj , V1, V2> that is found:

a. The value V1 is written to data item Xj, and

b. Aspecial redo-only log record<Ti , Xj , V1>is written to the log, where V1 is the value being restored to data item Xj during the rollback. These log records are sometimes called compensation log records. Such records do not need undo information, since we never need to undo such an undo operation. We shall explain later how they are used.

2. Once the log record <Ti start> is found the backward scan is stopped, and a log record <Ti abort> is written to the log.

4.19.2 Recovery after a System Crash: Recovery actions, when the database system is restarted after a crash, take place in two phases:

1. In the redo phase, the system replays updates of all transactions by scanning the log forward from the last checkpoint. The log records that are replayed include log records for transactions that were rolled back before system crash, and those that had not committed when the system crash occurred. This phase also determines all transactions that were incomplete at the time of the crash, and must therefore be rolled back. Such incomplete transactions would either have been active at the time of the checkpoint, and thus would appear in the transaction list in the checkpoint record, or would have started later; further, such incomplete transactions would have neither a<Ti abort> nor a <Ti commit> record in the log.

The specific steps taken while scanning the log are as follows:

a. The list of transactions to be rolled back, undo-list, is initially set to the list L in the <checkpoint L> log record.

b. Whenever a normal log record of the form <Ti , Xj , V1, V2>, or a redo-only log record of the form <Ti , Xj , V2> is encountered, the operation is redone; that is, the value V2 is written to data item Xj .

c. Whenever a log record of the form <Ti start> is found, Ti is added to undo-list.

d. Whenever a log record of the form <Ti abort> or <Ti commit> is found, Ti is removed from undo-list. At the end of the redo phase, undo-list contains the list of all transactions that are incomplete, that is, they neither committed nor completed rollback before the crash.
2. In the undo phase, the system rolls back all transactions in the undo-list. It performs rollback by scanning the log backward from the end.

a. Whenever it finds a log record belonging to a transaction in the undolist, it performs undo actions just as if the log record had been found during the rollback of a failed transaction.

b. When the system finds a <Ti start> log record for a transaction Ti in undo-list, it writes a <Ti abort> log record to the log, and removes Ti from undo-list.

c. The undo phase terminates once undo-list becomes empty, that is, the system has found <Ti start> log records for all transactions that were initially in undo-list. After the undo phase of recovery terminates, normal transaction processing can resume.

[image: image30.png]Start log records
found for all
transactions in
undo list

Beginning of log
okder | <Tostart>

<To, B, 2000, 2050>

<T, start>

<checkpoint {T, Ti}>

olback)
Redo Pass

To
(during normal

<T;, C, 700, 600> operation)
<T; commit> begins
<T,start> el
Endoflog) | 7. A, 500, 400 T, rolback
at crash! 2 complete
<T, B, 2000> -
&(T, abort> [Taisincomplete
Log records T atcrash Undolist: 7, ~ Undo Pass
added during <Ta A 500> —
recovery <T,abort> T, rolled back

) Ln undo pass
newer

Figure 4.15 Example of logged actions, and actions during recovery.

4.20 Buffer Management
4.20.1 Buffer Management: Transaction processing is based on a storage model in which main memory holds a log buffer, a database buffer, and a system buffer. The system buffer holds pages of system object code and local work areas of transactions.
The cost of outputting a block to stable storage is sufficiently high that it is desirable to output multiple log records at once. To do so, we write log records to a log buffer in main memory, where they stay temporarily until they are output to stable storage. Multiple log records can be gathered in the log buffer and output to stable storage in a single output operation. The order of log records in the stable storage must be exactly the same as the order in which they were written to the log buffer.

As a result of log buffering, a log record may reside in only main memory (volatile storage) for a considerable time before it is output to stable storage. Since such log records are lost if the system crashes, we must impose additional requirements on the recovery techniques to ensure transaction atomicity:

• Transaction Ti enters the commit state after the <Ti commit> log record has been output to stable storage.

• Before the <Ti commit> log record can be output to stable storage, all log records pertaining to transaction Ti must have been output to stable storage.

• Before a block of data in main memory can be output to the database (in nonvolatile storage), all log records pertaining to data in that block must have been output to stable storage. This rule is called the write-ahead logging (WAL) rule. Writing the buffered log to disk is sometimes referred to as a log force.
4.20.2 Database Buffering: One might expect that transactions would force-output all modified blocks to disk when they commit. Such a policy is called the force policy. The alternative, the no-force policy, allows a transaction to commit even if it has modified some blocks that have not yet been written back to disk.
Similarly, one might expect that blocks modified by a transaction that is still active should not be written to disk. This policy is called the no-steal policy. The alternative, the steal policy, allows the system to write modified blocks to disk even if the transactions that made those modifications have not all committed. As long as the write-ahead logging rule is followed, all the recovery algorithms work correctly even with the steal policy.
When a block B1 is to be output to disk, all log records pertaining to data in B1 must be output to stable storage before B1 is output. It is important that no writes to the block B1 be in progress while the block is being output, since such a write could violate the write-ahead logging rule. We can ensure that there are no writes in progress by using a special means of locking:

• Before a transaction performs a write on a data item, it acquires an exclusive lock on the block in which the data item resides. The lock is released immediately after the update has been performed.

• The following sequence of actions is taken when a block is to be output:

a) Obtain an exclusive lock on the block, to ensure that no transaction is performing a write on the block.

b) Output log records to stable storage until all log records pertaining to block B1 have been output.

c) Output block B1 to disk.

d) Release the lock once the block output has completed.
Locks that are held for a short duration, are often referred to as latches.
As a result of continuous output of modified blocks, the number of dirty blocks in the buffer, that is, blocks that have been modified in the buffer but have not been subsequently output, is minimized. Thus, the number of blocks that have to be output during a checkpoint is minimized.

4.20.3 Fuzzy Checkpointing: The checkpointing technique requires that all updates to the database be temporarily suspended while the checkpoint is in progress. If the number of pages in the buffer is large, a checkpoint may take a long time to finish, which can result in an unacceptable interruption in processing of transactions. To avoid such interruptions, the check pointing technique can be modified to permit updates to start once the checkpoint record has been written, but before the modified buffer blocks are written to disk. The checkpoint thus generated is a fuzzy checkpoint.
4.21 Failure with Loss of Nonvolatile Storage

Although failures in which the content of nonvolatile storage is lost are rare, we nevertheless need to be prepared to deal with this type of failure. The basic scheme is to dump the entire contents of the database to stable storage periodically—say, once per day. One approach to database dumping requires that no transaction may be active during the dump procedure, and uses a procedure similar to checkpointing:

1. Output all log records currently residing in main memory onto stable storage.

2. Output all buffer blocks onto the disk.

3. Copy the contents of the database to stable storage.

4. Output a log record <dump> onto the stable storage.
A dump of the database contents is also referred to as an archival dump, since we can archive the dumps and use them later to examine old states of the database. Dumps of a database and checkpointing of buffers are similar.
The simple dump procedure is costly for the following two reasons. First, the entire database must be copied to stable storage, resulting in considerable data transfer. Second, since transaction processing is halted during the dump procedure, CPU cycles are wasted. Fuzzy dump schemes have been developed that allow transactions to be active while the dump is in progress.
4.22 ARIES

4.22.0 Introduction: The ARIES recovery scheme is a state-of-the-art scheme that supports a number of features to provide greater concurrency, reduce logging overheads, and minimize recovery time. It is also based on repeating history, and allows logical undo operations. The scheme flushes pages on a continuous basis and does not need to flush all pages at the time of a checkpoint. It uses log sequence numbers (LSNs) to implement a variety of Optimizations that reduce the time taken for recovery.

4.22.1 ARIES: ARIES uses a number of techniques to reduce the time taken for recovery, and to reduce the overhead of checkpointing. In particular, ARIES is able to avoid redoing many logged operations that have already been applied and to reduce the amount of information logged. The price paid is greater complexity; the benefits are worth the price. The major differences between ARIES and the recovery algorithm presented earlier are that ARIES:

1. Uses a log sequence number (LSN) to identify log records, and stores LSNs in database pages to identify which operations have been applied to a database page.

2. Supports physiological redo operations, which are physical in that the affected page is physically identified, but can be logical within the page.

3. Uses a dirty page table to minimize unnecessary redos during recovery. As mentioned earlier, dirty pages are those that have been updated in memory, and the disk version is not up-to-date.

4. Uses a fuzzy-checkpointing scheme that records only information about dirty pages and associated information and does not even require writing of dirty pages to disk. It flushes dirty pages in the background, continuously, instead of writing them during checkpoints.
4.22.2 Recovery Algorithm: ARIES recovers from a system crash in three passes.

• Analysis pass: This pass determines which transactions to undo, which pages were dirty at the time of the crash, and the LSN from which the redo pass should start.

• Redo pass: This pass starts from a position determined during analysis, and performs a redo, repeating history, to bring the database to a state it was in before the crash.

• Undo pass: This pass rolls back all transactions that were incomplete at the time of crash.
4.22.3 Other Features: Among other key features that ARIES provides are:

• Nested top actions: ARIES allows the logging of operations that should not be undone even if a transaction gets rolled back. Such operations that should not be undone are called nested top actions.
• Recovery independence: Some pages can be recovered independently from others, so that they can be used even while other pages are being recovered. If some pages of a disk fail, they can be recovered without stopping transaction processing on other pages.

• Savepoints: Transactions can record savepoints, and can be rolled back partially, up to a savepoint. This can be quite useful for deadlock handling, since transactions can be rolled back up to a point that permits release of required locks, and then restarted from that point. Programmers can also use savepoints to undo a transaction partially, and then continue execution.

• Fine-grained locking: The ARIES recovery algorithm can be used with index concurrency-control algorithms that permit tuple-level locking on indices, instead of page-level locking, which improves concurrency significantly.

• Recovery optimizations: The DirtyPageTable can be used to prefetch pages during redo, instead of fetching a page only when the system finds a log record to be applied to the page. Out-of-order redo is also possible: Redo can be postponed on a page being fetched from disk, and performed when the page is fetched. Meanwhile, other log records can continue to be processed.
4.23 Remote Backup Systems
Remote backup systems provide a high degree of availability, allowing transaction processing to continue even if the primary site is destroyed by a fire, flood, or earthquake. Data and log records from a primary site are continually backed up to a remote backup site. If the primary site fails, the remote backup site takes over transaction processing, after executing certain recovery actions.
[image: image31.png]s \m> .

£ M Sl=

Figure 4.16 Architecture of remote backup system.

Several issues must be addressed in designing a remote backup system:

• Detection of failure. It is important for the remote backup system to detect when the primary has failed. We maintain several communication links with independent modes of failure between the primary and the remote backup.

• Transfer of control. When the primary fails, the backup site takes over processing and becomes the new primary. When the original primary site recovers, it can either play the role of remote backup, or take over the role of primary site again.

• Time to recover. If the log at the remote backup grows large, recovery will take a long time. The remote backup site can periodically process the redo log records that it has received and can perform a checkpoint, so that earlier parts of the log can be deleted. The delay before the remote backup takes over can be significantly reduced as a result. A hot-spare configuration can make takeover by the backup site almost instantaneous.

• Time to commit. To ensure that the updates of a committed transaction are durable, a transaction must not be declared committed until its log records have reached the backup site. This delay can result in a longer wait to commit a transaction, and some systems therefore permit lower degrees of durability. The degrees of durability can be classified as follows:

· One-safe. A transaction commits as soon as its commit log record is written to stable storage at the primary site.

· Two-very-safe. A transaction commits as soon as its commit log record is written to stable storage at the primary and the backup site.

· Two-safe. This scheme is the same as two-very-safe if both primary and backup sites are active. If only the primary is active, the transaction is allowed to commit as soon as its commit log record is written to stable storage at the primary site.
This scheme provides better availability than does two-very-safe, while avoiding the problem of lost transactions faced by the one-safe scheme.

An alternative way of achieving high availability is to use a distributed database, with data replicated at more than one site. Transactions are then required to update all replicas of any data item that they update.
Unit 4 - SHORT ANSWER QUESTIONS
• Concurrency-control: When several transactions execute concurrently in the database, the consistency of data may no longer be preserved. It is necessary for the system to control the interaction among the concurrent transactions, and this control is achieved through one of a variety of mechanisms called concurrency-control schemes.

• Ensuring serializability: To ensure serializability, we can use various concurrency-control schemes. All these schemes either delay an operation or abort the transaction that issued the operation. The most common ones are locking protocols, timestamp ordering schemes, validation techniques, and multiversion schemes.

• Locking protocol: A locking protocol is a set of rules that state when a transaction may lock and unlock each of the data items in the database.

• Two-phase locking protocol: The two-phase locking protocol allows a transaction to lock a new data item only if that transaction has not yet unlocked any data item. The protocol ensures serializability, but not deadlock freedom. In the absence of information concerning the manner in which data items are accessed, the two-phase locking protocol is both necessary and sufficient for ensuring serializability.
• The strict two-phase locking protocol permits release of exclusive locks only at the end of transaction, in order to ensure recoverability and cascadelessness of the resulting schedules. The rigorous two-phase locking protocol releases all locks only at the end of the transaction.

• Graph-based locking protocols impose restrictions on the order in which items are accessed, and can thereby ensure serializability without requiring the use of two-phase locking, and can additionally ensure deadlock freedom.

• Ordering: Various locking protocols do not guard against deadlocks. One way to prevent deadlock is to use an ordering of data items, and to request locks in a sequence consistent with the ordering.

• Another way to prevent deadlock is to use preemption and transaction rollbacks. To control the preemption, we assign a unique timestamp to each transaction. The system uses these timestamps to decide whether a transaction should wait or roll back. If a transaction is rolled back, it retains its old timestamp when restarted. The wound–wait scheme is a preemptive scheme.

• wait-for graph: If deadlocks are not prevented, the system must deal with them by using a deadlock detection and recovery scheme. To do so, the system constructs a wait-for graph. A system is in a deadlock state if and only if the wait-for graph contains a cycle. When the deadlock detection algorithm determines that a deadlock exists, the system must recover from the deadlock. It does so by rolling back one or more transactions to break the deadlock.

• Multiple levels of granularity: There are circumstances where it would be advantageous to group several data items, and to treat them as one aggregate data item for purposes of working, resulting in multiple levels of granularity. We allow data items of various sizes, and define a hierarchy of data items, where the small items are nestedwithin larger ones. Such a hierarchy can be represented graphically as a tree. Locks are acquired in root-to-leaf order; they are released in leaf-to-root order. The protocol ensures serializability, but not freedom from deadlock.

• A timestamp-ordering scheme ensures serializability by selecting an ordering in advance between every pair of transactions. A unique fixed timestamp is associated with each transaction in the system. The timestamps of the transactions determine the serializability order. Thus, if the timestamp of transaction Ti is smaller than the timestamp of transaction Tj , then the scheme ensures that the produced schedule is equivalent to a serial schedule in which transaction Ti appears before transaction Tj . It does so by rolling back a transaction whenever such an order is violated.

• A validation scheme is an appropriate concurrency-control method in cases where a majority of transactions are read-only transactions, and thus the rate of conflicts among these transactions is low. A unique fixed timestamp is associated with each transaction in the system. The serializability order is determined by the timestamp of the transaction. A transaction in this scheme is never delayed. It must, however, pass a validation test to complete. If it does not pass the validation test, the system rolls it back to its initial state.

• A multiversion concurrency-control scheme is based on the creation of a new version of a data item for each transaction that writes that item. When a read operation is issued, the system selects one of the versions to be read. The concurrency-control scheme ensures that the version to be read is selected in a manner that ensures serializability, by using timestamps. A read operation always succeeds.

a)In multiversion timestamp ordering, a write operation may result in the rollback of the transaction.

b)In multiversion two-phase locking, write operations may result in a lock wait or, possibly, in deadlock.

• Snapshot isolation is a multiversion concurrency-control protocol based on validation, which, unlike multiversion two-phase locking, does not require transactions to be declared as read-only or update. Snapshot isolation does not guarantee serializability, but is nevertheless supported by many database systems.

• Special concurrency-control techniques can be developed for special data structures. Often, special techniques are applied in B+-trees to allow greater concurrency. These techniques allow nonserializable access to the B+-tree, but they ensure that the B+-tree structure is correct, and ensure that accesses to the database itself are serializable.
• System Failures: A computer system, like any other mechanical or electrical device, is subject to failure. There are a variety of causes of such failure, including disk crash, power failure, and software errors. In each of these cases, information concerning the database system is lost.

• Transaction Failures: In addition to system failures, transactions may also fail for various reasons, such as violation of integrity constraints or deadlocks.

• Recovery System: An integral part of a database system is a recovery scheme that is responsible for the detection of failures and for the restoration of the database to a state that existed before the occurrence of the failure.

• Storage: The various types of storage in a computer are volatile storage, nonvolatile storage, and stable storage. Data in volatile storage, such as in RAM, are lost when the computer crashes. Data in nonvolatile storage, such as disk, are not lost when the computer crashes, but may occasionally be lost because of failures such as disk crashes. Data in stable storage are never lost.

• Stable storage: Stable storage that must be accessible online is approximated with mirrored disks, or other forms of RAID,which provide redundant data storage. Offline, or archival, stable storage may consist of multiple tape copies of data stored in a physically secure location.

• Atomicity and Durability: In case of failure, the state of the database system may no longer be consistent; that is, it may not reflect a state of the world that the database is supposed to capture. To preserve consistency, we require that each transaction be atomic. It is the responsibility of the recovery scheme to ensure the atomicity and durability property.

• Log records: In log-based schemes, all updates are recorded on a log, which must be kept in stable storage. A transaction is considered to have committed when its last log record, which is the commit log record for the transaction, has been output to stable storage.

• Log records Undo and Redo: Log records contain old values and new values for all updated data items. The new values are used in case the updates need to be redone after a system crash. The old values are used to roll back the updates of the transaction if the transaction aborts during normal operation, as well as to roll back the updates of the transaction in case the system crashed before the transaction committed.

• Deferred Modifications: In the deferred-modifications scheme, during the execution of a transaction, all the write operations are deferred until the transaction has been committed, at which time the system uses the information on the log associated with the transaction in executing the deferred writes. With deferred modification, log records do not need to contain old values of updated data items.

• Check pointing: To reduce the overhead of searching the log and redoing transactions, we can use checkpointing techniques.

• Modern recovery algorithms: Modern recovery algorithms are based on the concept of repeating history, whereby all actions taken during normal operation (since the last completed checkpoint) are replayed during the redo pass of recovery. Repeating history restores the system state to what it was at the time the last log record was output to stable storage before the system crashed. Undo is then performed from this state, by executing an undo pass that processes log records of incomplete transactions in reverse order.

• Undo: Undo of an incomplete transaction writes out special redo-only log records, and an abort log record. After that, the transaction can be considered to have completed, and it will not be undone again.

• Log Buffer: Transaction processing is based on a storage model in which main memory holds a log buffer, a database buffer, and a system buffer. The system buffer holds pages of system object code and local work areas of transactions.

• Recovery Scheme: Efficient implementation of a recovery scheme requires that the number of writes to the database and to stable storage be minimized. Log records may be kept in volatile log buffer initially, but must be written to stable storage when one of the following conditions occurs:

· Before the <Ti commit> log record may be output to stable storage, all log records pertaining to transaction Ti must have been output to stable storage.

· Before a block of data in main memory is output to the database (in nonvolatile storage), all log records pertaining to data in that block must have been output to stable storage.

• Modern recovery techniques: Modern recovery techniques support high-concurrency locking techniques, such as those used for B+-tree concurrency control. These techniques allow early release of lower-level locks obtained by operations such as inserts or deletes, which allows other such operations to be performed by other transactions. After lower-level locks are released, physical undo is not possible, and instead logical undo, such as a deletion to undo an insertion, is required. Transactions retain higher-level locks that ensure that concurrent transactions cannot perform actions that could make logical undo of an operation impossible.

• Dump: To recover from failures that result in the loss of nonvolatile storage, we must dump the entire contents of the database onto stable storage periodically—say, once per day. If a failure occurs that results in the loss of physical database blocks, we use the most recent dump in restoring the database to a previous consistent state. Once this restoration has been accomplished, we use the log to bring the database system to the most recent consistent state.

• ARIES: The ARIES recovery scheme is a state-of-the-art scheme that supports a number of features to provide greater concurrency, reduce logging overheads, and minimize recovery time. It is also based on repeating history, and allows logical undo operations. The scheme flushes pages on a continuous basis and does not need to flush all pages at the time of a checkpoint. It uses log sequence numbers (LSNs) to implement a variety of optimizations that reduce the time taken for recovery.

• Remote backup: Remote backup systems provide a high degree of availability, allowing transaction processing to continue even if the primary site is destroyed by a fire, flood, or earthquake. Data and log records from a primary site are continually backed up to a remote backup site. If the primary site fails, the remote backup site takes over transaction processing, after executing certain recovery actions.

UNIT-IV

Transaction Management - Transaction Concept - Transaction State - Implementation of Atomicity and Durability - Concurrent - Executions - Serializability - Recoverability - Implementation of Isolation - Testing for serializability.

Concurrency Control - Lock - Based Protocols - Timestamp Based Protocols - Validation - Based Protocols - Multiple Granularity.

Recovery System-Failure Classification-Storage Structure-Recovery and Atomicity - Log - Based Recovery - Recovery with Concurrent Transactions - Buffer Management - Failure with loss of nonvolatile storage - Advance Recovery systems - Remote Backup systems.

Department of CSE,GPCET | 126

