




































UNIT – IV
THE TRANSPORT LAYER
INTRODUCTION:
· The transport layer in the TCP/IP suite is located between the application layer and the network layer. It provides services to the application layer and receives services from the network layer. 
· The transport layer acts as a liaison between a client program and a server program, a process-to-process connection. The transport layer is the heart of the TCP/IP protocol suite; it is the end-to-end logical vehicle for transferring data from one point to another in the Internet.
· Communication is provided using a logical connection, which means that the two application layers, which can be located in different parts of the globe, assume that there is an imaginary direct connection through which they can send and receive messages.

I. THE TRANSPORT SERVICE:
a)  Services provided to the upper layers:
· The ultimate goal of the transport layer is to provide efficient, reliable, and cost-effective data transmission service to its users, normally processes in the application layer. To achieve this, the transport layer makes use of the services provided by the network layer. The software and/or hardware within the transport layer that does the work are called the transport entity. 
· The transport entity can be located in the operating system kernel, in a library package bound into network applications, in a separate user process, or even on the network interface card. The first two options are most common on the Internet. The (logical) relationship of the network, transport, and application layers is illustrated in Fig. 4.1.
·  Just as there are two types of network service, connection-oriented and connectionless, there are also two types of transport service. The connection-oriented transport service is similar to the connection-oriented network service in many ways. In both cases, connections have three phases: establishment, data transfer, and release. Addressing and flow control are also similar in both layers.
· Furthermore, the connectionless transport service is also very similar to the connectionless network service. However, note that it can be difficult to provide a connectionless transport service on top of a connection-oriented network service, since it is inefficient to set up a connection to send a single packet and then tear (meaning run/rip/rush) it down immediately afterwards.
[image: ]
Figure 4.1: The network, transport, and application layers

b)  Transport Service Primitives:
· To allow users to access the transport service, the transport layer must provide some operations to application programs, that is, a transport service interface. Each transport service has its own interface. 
· The transport service is similar to the network service, but there are also some important differences. The main difference is that the network service is intended to model the service offered by real networks and all. Real networks can lose packets, so the network service is generally unreliable. 
· The connection-oriented transport service, in contrast, is reliable. Of course, real networks are not error-free, but that is precisely the purpose of the transport layer—to provide a reliable service on top of an unreliable network. 
· A second difference between the network service and transport service is that the services are intended for. The network service is used only by the transport entities. Few users write their own transport entities, and thus few users or programs ever (meaning always/forever/still) see the bare network service.
· To get an idea of what a transport service might be like, consider the five primitives listed in Fig. 4-2
[image: ]
Figure 4-2: The primitives for a simple transport service.
· TPDU (Transport Protocol Data Unit) for messages sent from transport entity to transport entity. TPDU are contained in packets. Packets are contained in frames (exchanged by the data link layer). When a frame arrives, the data link layer processes the frame header and, if the destination address matches for local delivery, passes the contents of the frame payload field up to the network entity. The network entity similarly processes the packet header and then passes the contents of the packet payload up to the transport entity. 
· This nesting is illustrated in Fig. 4-3
[image: ]
Figure 6-3:  Nesting of segments, packets, and frames.
· A state diagram for connection establishment and release for these simple primitives is given in Fig. 4 -4. Each transition is triggered by some event, either a primitive executed by the local transport user or an incoming packet. For simplicity, we assume here that each segment is separately acknowledged. We also assume that a symmetric disconnection model is used, with the client going first. Please note that this model is quite unsophisticated.




[image: ]
Figure 4.4: A state diagram for a simple connection management scheme. Transitions labeled in italics are caused by packet arrivals. The solid lines show the client’s state sequence. The dashed lines show the server’s state sequence.
c) Berkeley sockets: 
· Let us now briefly inspect another set of transport primitives, the socket primitives as they are used for TCP. Sockets were first released as part of the Berkeley UNIX 4.2BSD software distribution in 1983. They quickly became popular.
· The primitives are now widely used for Internet programming on many operating systems, especially UNIX-based systems, and there is a socket-style API for Windows called ‘‘winsock.’’ The primitives are listed in Fig. 4.5.
[image: ]
Figure 4.5: The socket primitives for TCP
· Note: An Example of Socket Programming: An Internet File Server






II. ELEMENTS OF TRANSPORT PROTOCOLS:
· The transport service is implemented by a transport protocol used between the two transport entities. In some ways, transport protocols resemble the data link protocols. Both have to deal with error control, sequencing, and flow control, among other issues. 
· However, significant differences between the two also exist. These differences are due to major dissimilarities between the environments in which the two protocols operate, as shown in Fig. 4.6.
[image: ]
	Figure 4.6: Environment of the (a) data link layer (b) transport layer
· At the data link layer, two routers communicate directly via a physical channel, whether wired or wireless, whereas at the transport layer, this physical channel is replaced by the entire network. 
· For one thing, over point-to-point links such as wires or optical fiber, it is usually not necessary for a router to specify which router it wants to talk to—each outgoing line leads directly to a particular router. In the transport layer, explicit addressing of destinations is required.
· For another thing, the process of establishing a connection over the wire of Fig. 4.6(a) is simple: the other end is always there (unless it has crashed, in which case it is not there). Either way, there is not much to do. 
· Even on wireless links, the process is not much different. Just sending a message is sufficient to have it reach all other destinations. If the message is not acknowledged due to an error, it can be resent. In the transport layer, initial connection establishment is complicated.
1. Addressing: 
· When an application (e.g., a user) process wishes to set up a connection to a remote application process, it must specify which one to connect to. (Connectionless transport has the same problem: to whom should each message be sent?) The method normally used is to define transport addresses to which processes can listen for connection requests. 
· In the Internet, these endpoints are called ports. We will use the generic term TSAP (Transport Service Access Point) to mean a specific endpoint in the transport layer. The analogous endpoints in the network layer (i.e., network layer addresses) are naturally called NSAPs (Network Service Access Points). IP addresses are examples of NSAPs. 
· Figure 4.7 illustrates the relationship between the NSAPs, the TSAPs, and a transport connection.
[image: ]
Figure 4.7: TSAPs, NSAPs, and Transport connections
· Application processes, both clients and servers, can attach themselves to a local TSAP to establish a connection to a remote TSAP. These connections run through NSAPs on each host, as shown in figure 4.7.
· A possible scenario for a transport connection is as follows: 
1. A mail server process attaches itself to TSAP 1522 on host 2 to wait for an incoming call. A call such as our LISTEN might be used, for example. 
2. An application process on host 1 wants to send an email message, so it attaches itself to TSAP 1208 and issues a CONNECT request. The request specifies TSAP 1208 on host 1 as the source and TSAP 1522 on host 2 as the destination. This action ultimately results in a transport connection being established between the application process and the server. 
3. The application process sends over the mail message. 
4. The mail server responds to say that it will deliver the message. 
5. The transport connection is released. 
2. Connection Establishment:
· Establishing a connection sounds easy, but it is actually surprisingly tricky. At first glance, it would seem sufficient for one transport entity to just send a CONNECTION REQUEST segment to the destination and wait for a CONNECTION ACCEPTED reply. The problem occurs when the network can lose, delay, corrupt, and duplicate packets. This behavior causes serious complications. 
· Imagine a network that is so congested that acknowledgements hardly ever get back in time and each packet times out and is retransmitted two or three times. Suppose that the network uses datagram inside and that every packet follows a different route. 
· Some of the packets might get stuck in a traffic jam inside the network and take a long time to arrive. That is, they may be delayed in the network and pop out much later, when the sender thought that they had been lost. 
· The worst possible nightmare is as follows. “A user establishes a connection with a bank, sends messages telling the bank to transfer a large amount of money to the account of a not-entirely-trustworthy person “. Unfortunately, the packets decide to take the scenic route to the destination and go off exploring a remote corner of the network.
· The sender then times out and sends them all again. This time the packets take the shortest route and are delivered quickly so the sender releases the connection.
· Unfortunately, eventually the initial batch of packets finally come out of hiding and arrives at the destination in order, asking the bank to establish a new connection and transfer money (again). The bank has no way of telling that these are duplicates. It must assume that this is a second, independent transaction, and transfers the money again.
· The crux (meaning root) of the problem is that the delayed duplicates are thought to be new packets. We cannot prevent packets from being duplicated and delayed. But if and when this happens, the packets must be rejected as duplicates and not processed as fresh packets.
· The problem can be attacked in various ways, none of them very satisfactory. One way is to use throwaway transport addresses. In this approach, each time a transport address is needed, a new one is generated. When a connection is released, the address is discarded and never used again. Delayed duplicate packets then never find their way to a transport process and can do no damage.
Note: However, this approach makes it more difficult to connect with a process in the first place.
· Another possibility is to give each connection a unique identifier (i.e., a sequence number incremented for each connection established) chosen by the initiating party and put in each segment, including the one requesting the connection.
· After each connection is released, each transport entity can update a table listing obsolete connections as (peer transport entity, connection identifier) pairs. Whenever a connection request comes in, it can be checked against the table to see if it belongs to a previously released connection.
· Unfortunately, this scheme has a basic flaw: it requires each transport entity to maintain a certain amount of history information indefinitely. This history must persist at both the source and destination machines. Otherwise, if a machine crashes and loses its memory, it will no longer know which connection identifiers have already been used by its peers.
· Instead, we need to take a different tack to simplify the problem. Rather than allowing packets to live forever within the network, we devise a mechanism to kill off aged packets that are still hobbling about.
· Packet lifetime can be restricted to a known maximum using one (or more) of the following techniques: 
1. Restricted network design. 
2. Putting a hop counter in each packet. 
3. Time stamping each packet. 
· TCP uses three-way handshake to establish connections in the presence of delayed duplicate control segments as shown in figure 4.8.
[image: ]
Figure 4.5: Three protocol scenarios for establishing a connection using a three-way handshake. CR denotes Connection Request. (a) Normal operation. (b) Old duplicate connection request appearing out of nowhere. (c) Duplicate connection request and duplicate ack.
3. Connection Release: 
· Releasing a connection is easier than establishing one. There are two styles of terminating a connection: asymmetric release and symmetric release. 
· Asymmetric release is the way the telephone system works: when one party hangs up, the connection is broken. 
· Symmetric release treats the connection as two separate unidirectional connections and requires each one to be released separately. 
· Asymmetric release is abrupt and may result in data loss. Consider the scenario of Fig. 4.9. After the connection is established, host 1 sends a segment that arrives properly at host 2. Then host 1 sends another segment. 
· Unfortunately, host 2 issues a DISCONNECT before the second segment arrives. The result is that the connection is released and data are lost. 
· Symmetric release does the job when each process has a fixed amount of data to send and clearly knows when it has sent it. In other situations, determining that all the work has been done and the connection should be terminated is not so obvious. 
· One can envision a protocol in which host 1 says ‘‘I am done. Are you done too?’’ If host 2 responds: ‘‘I am done too. Goodbye, the connection can be safely released.’’ 
· In practice, we can avoid this quandary (meaning dilemma/difficulty) by foregoing the need for agreement and pushing the problem up to the transport user, letting each side independently decide when it is done. This is an easier problem to solve. 
[image: ]
Figure 4.6: Abrupt disconnection with loss of data
· Figure 4.10 illustrates four scenarios of releasing using a three-way handshake. While this protocol is not infallible, it is usually adequate. In Fig. 4.10(a), we see the normal case in which one of the users sends a DR (DISCONNECTION REQUEST) segment to initiate the connection release.
· When it arrives, the recipient sends back a DR segment and starts a timer, just in case its DR is lost. When this DR arrives, the original sender sends back an ACK segment and releases the connection.
· Finally, when the ACK segment arrives, the receiver also releases the connection. Releasing a connection means that the transport entity removes the information about the connection from its table of currently open connections and signals the connection’s owner (the transport user) somehow. 
· If the final ACK segment is lost, as shown in Fig. 4.10(b), the situation is saved by the timer. When the timer expires, the connection is released anyway. Now consider the case of the second DR being lost. 
· The user initiating the disconnection will not receive the expected response, will time out, and will start all over again. In Fig. 4.10(c), we see how this works, assuming that the second time no segments is lost and all segments are delivered correctly and on time. 
· Our last scenario, Fig. 4.10(d), is the same as Fig. 4.10(c) except that now we assume all the repeated attempts to retransmit the DR also fail due to lost segments. After N retries, the sender just gives up and releases the connection. Meanwhile, the receiver times out and also exits.


[image: ]
Figure 4.10: Four protocol scenarios for releasing a connection. (a) Normal case of three-way handshake. (b) Final ACK lost. (c) Response lost. (d) Response lost and subsequent DRs lost.
4. Error control and Flow control: 
· Error control is ensuring that the data is delivered with the desired level of reliability, usually that all of the data is delivered without any errors. Flow control is keeping a fast transmitter from overrunning a slow receiver. 
· In some ways the flow control problem in the transport layer is the same as in the data link layer, but in other ways it is different. 
· The basic similarity is that in both layers a sliding window or other scheme is needed on each connection to keep a fast transmitter from overrunning a slow receiver. 
· The main difference is that a router usually has relatively few lines, whereas a host may have numerous connections. 
· This difference makes it impractical to implement the data link buffering strategy in the transport layer. 
· If the network service is unreliable, the sender must buffer all TPDUs sent, just as in the data link layer. 
· With reliable network service, other trade-offs become possible. 
· In particular, if the sender knows that the receiver always has buffer space, it need not retain copies of the TPDUs it sends. 
· If the receiver cannot guarantee that every incoming TPDU will be accepted, the sender will have to buffer anyway. 
· In the latter case, the sender cannot trust the network layer's acknowledgement, because the acknowledgement means only that the TPDU arrived, not that it was accepted. 
· Even if the receiver has agreed to do the buffering, there still remains the question of the buffer size. 
· If most TPDUs are nearly the same size, it is natural to organize the buffers as a pool of identically-sized buffers, with one TPDU per buffer, as in Fig. 4.11(a). 
· If there is wide variation in TPDU size, a pool of fixed-sized buffers presents problems. 
· If the buffer size is chosen equal to the largest possible TPDU, space will be wasted whenever a short TPDU arrives. 
· If the buffer size is chosen less than the maximum TPDU size, multiple buffers will be needed for long TPDUs, with the attendant complexity.
[image: 6-15]
Fig. 4.11: (a) Chained fixed-size buffers.  (b)  Chained variable-sized buffers.  
(c)  One large circular buffer per connection.
· Another approach to the buffer size problem is to use variable-sized buffers, as in Fig. 4.11(b).
· The advantage here is better memory utilization, at the price of more complicated buffer management. 
· A third possibility is to dedicate a single large circular buffer per connection, as in Fig. 4.11(c).
· This system also makes good use of memory, provided that all connections are heavily loaded, but is poor if some connections are lightly loaded.
5. Multiplexing: 
· Multiplexing, or sharing several conversations over connections, virtual circuits, and physical links plays a role in several layers of the network architecture. In the transport layer, the need for multiplexing can arise in a number of ways. For example, if only one network address is available on a host, all transport connections on that machine have to use it. 
· When a segment comes in, some way is needed to tell which process to give it to. This situation, called multiplexing, is shown in Fig. 4.12(a). In this figure, four distinct transport connections all use the same network connection (e.g., IP address) to the remote host. 
· Multiplexing can also be useful in the transport layer for another reason. Suppose, for example, that a host has multiple network paths that it can use. If a user needs more bandwidth or more reliability than one of the network paths can provide, a way out is to have a connection that distributes the traffic among multiple network paths on a round-robin basis, as indicated in Fig. 4.12(b).
[image: ]
Figure 4.12: (a) Multiplexing (b) Inverse Multiplexing
6. Crash Recovery: 
· If hosts and routers are subject to crashes or connections are long-lived (e.g., large software or media downloads), recovery from these crashes becomes an issue. 
· If the transport entity is entirely within the hosts, recovery from network and router crashes is straightforward. The transport entities expect lost segments all the time and know how to cope with them by using retransmissions. 
· A more troublesome problem is how to recover from host crashes. In particular, it may be desirable for clients to be able to continue working when servers crash and quickly reboot.
III. CONGESTION CONTROL:
· If the transport entities on many machines send too many packets into the network too quickly, the network will become congested, with performance degraded as packets are delayed and lost. 
· Controlling congestion to avoid this problem is the combined responsibility of the network and transport layers. Congestion occurs at routers, so it is detected at the network layer. 
· However, congestion is ultimately caused by traffic sent into the network by the transport layer. The only effective way to control congestion is for the transport protocols to send packets into the network more slowly. 
1. Desirable Bandwidth Allocation: 
· Before we describe how to regulate traffic, we must understand what we are trying to achieve by running a congestion control algorithm. That is, we must specify the state in which a good congestion control algorithm will operate the network. 
· The goal is more than to simply avoid congestion. It is to find a good allocation of bandwidth to the transport entities that are using the network. A good allocation will deliver good performance because it uses all the available bandwidth but avoids congestion, it will be fair across competing transport entities, and it will quickly track changes in traffic demands.
i) Efficiency and Power: 
· An efficient allocation of bandwidth across transport entities will use all of the network capacity that is available. However, it is not quite right to think that if there is a 100-Mbps link, five transport entities should get 20 Mbps each. They should usually get less than 20 Mbps for good performance.
· This curve and a matching curve for the delay as a function of the offered load are given in Fig. 4.13.

[image: ]
Figure 4.13. (a) Goodput and (b) delay as a function of offered load.
· As the load increases in Fig. 6-19(a) goodput initially increases at the same rate, but as the load approaches the capacity, goodput rises more gradually. This falloff is because bursts of traffic can occasionally mount up and cause some losses at buffers inside the network. If the transport protocol is poorly designed and retransmits packets that have been delayed but not lost, the network can enter congestion collapse. In this state, senders are furiously sending packets, but increasingly little useful work is being accomplished.
· The corresponding delay is given in Fig. 4.13(b) initially the delay is fixed, representing the propagation delay across the network. As the load approaches the capacity, the delay rises, slowly at first and then much more rapidly. This is again because of bursts of traffic that tend to mound up at high load. The delay cannot really go to infinity, except in a model in which the routers have infinite buffers. Instead, packets will be lost after experiencing the maximum buffering delay.
· For both goodput and delay, performance begins to degrade at the onset of congestion.
· To identify it, Klein rock (1979) proposed the metric of power, where
[image: ]
· Power will initially rise with offered load, as delay remains small and roughly constant, but will reach a maximum and fall as delay grows rapidly. 
ii) Max-Min Fairness: 
· In the preceding discussion, we did not talk about how to divide bandwidth between different transport senders. This sound like a simple question to answer—give all the senders an equal fraction of the bandwidth—but it involves several considerations. 
· Perhaps the first consideration is to ask what this problem has to do with congestion control. 
· A second consideration is what a fair portion means for flows in a network. It is simple enough if N flows use a single link, in which case they can all have 1/N of the bandwidth (although efficiency will dictate that they use slightly less if the traffic is bursty). 
· But what happens if the flows have different, but overlapping, network paths? For example, one flow may cross three links, and the other flows may cross one link. The three-link flow consumes more network resources. It might be fairer in some sense to give it less bandwidth than the one-link flows. 
· The form of fairness that is often desired for network usage is max-min fairness. An allocation is max-min fair if the bandwidth given to one flow cannot be increased without decreasing the bandwidth given to another flow with an allocation that is no larger.



iii) Convergence: 
· A final criterion is that the congestion control algorithm converges quickly to a fair and efficient allocation of bandwidth. The discussion of the desirable operating point above assumes a static network environment. 
· However, connections are always coming and going in a network, and the bandwidth needed by a given connection will vary over time too. Because of the variation in demand, the ideal operating point for the network varies over time. 
· A good congestion control algorithm should rapidly converge to the ideal operating point, and it should track that point as it changes over time. If the convergence is too slow, the algorithm will never be close to the changing operating point. If the algorithm is not stable, it may fail to converge to the right point in some cases, or even oscillate around the right point.
An example of a bandwidth allocation that changes over time and converges quickly is shown in Fig. 4.14. Initially, flow 1 has all of the bandwidth. One second later, flow 2 starts. It needs bandwidth as well. The allocation quickly changes to give each of these flows half the bandwidth. At 4 seconds, a third flow Joins. However, this flow uses only 20% of the bandwidth, which is less than its fair share (which is a third). Flows 1 and 2 quickly adjust, dividing the available bandwidth to each have 40% of the bandwidth. At 9 seconds, the second flow leaves, and the third flow remains unchanged. The first flow quickly captures 80% of the bandwidth. At all times, the total allocated bandwidth is approximately 100%, so that the network is fully used, and competing flows get equal treatment (but do not have to use more bandwidth than they need).
[image: ]
Figure 4.14: Changing bandwidth allocation over time.
2.  Regulating the sending rate: 
· Now it is time to regulate the sending rates to obtain a desirable bandwidth allocation. The sending rate may be limited by two factors.
A) The first is flow control, in the case that there is insufficient buffering at the receiver. 
B) The second is congestion, in the case that there is insufficient capacity in the network. 
· In Fig. 4.15, we see this problem illustrated hydraulically. In Fig. 4.15(a), we see a thick pipe leading to a small-capacity receiver. This is a flow-control limited situation. As long as the sender does not send more water than the bucket can contain, no water will be lost. 
· In Fig. 4.15(b), the limiting factor is not the bucket capacity, but the internal carrying capacity of the network. If too much water comes in too fast, it will back up and some will be lost (in this case, by overflowing the funnel). 
· The way that a transport protocol should regulate the sending rate depends on the form of the feedback returned by the network. Different network layers may return different kinds of feedback. The feedback may be explicit or implicit, and it may be precise or imprecise.

[image: ]
Figure 4.15: (a) a fast network feeding a low-capacity receiver. (b) a slow network feeding a high-capacity receiver.
3.  Wireless issues: 
· Transport protocols such as TCP that implement congestion control should be independent of the underlying network and link layer technologies. That is a good theory, but in practice there are issues with wireless networks. The main issue is that packet loss is often used as a congestion signal, including by TCP.
· Wireless networks lose packets all the time due to transmission errors. To function well, the only packet losses that the congestion control algorithm should observe are losses due to insufficient bandwidth, not losses due to transmission errors. One solution to this problem is to mask the wireless losses by using retransmissions over the wireless link.
THE INTERNET TRANSPORT PROTOCOLS
I. UDP (User Datagram Protocol):
· The Internet has two main protocols in the transport layer, a connectionless protocol and a connection-oriented one. The protocols complement each other. 
· The connectionless protocol is UDP. It does almost nothing beyond sending packets between applications, letting applications build their own protocols on top as needed. 
· The connection-oriented protocol is TCP. It does almost everything. It makes connections and adds reliability with retransmissions, along with flow control and congestion control, all on behalf of the applications that use it.
1. Introduction to Udp: 
· The Internet protocol suite supports a connectionless transport protocol called UDP (User Datagram Protocol). 
· UDP provides a way for applications to send encapsulated IP datagrams without having to establish a connection. UDP is described in RFC 768. 
· UDP transmits segments consisting of an 8-byte header followed by the payload. The header is shown in Fig. 4.16. The two ports serve to identify the endpoints within the source and destination machines. 
· When a UDP packet arrives, its payload is handed to the process attached to the destination port. This attachment occurs when the BIND primitive or something similar is used.

[image: ]
Figure 4.16: the UDP header
· Think of ports as mailboxes that applications can rent to receive packets. In fact, the main value of UDP over just using raw IP is the addition of the source and destination ports.
· Without the port fields, the transport layer would not know what to do with each incoming packet. With them, it delivers the embedded segment to the correct application. 
· The source port is primarily needed when a reply must be sent back to the source. By copying the Source port field from the incoming segment into the Destination port field of the outgoing segment, the process sending the reply can specify which process on the sending machine is to get it. 
· The UDP length field includes the 8-byte header and the data. The minimum length is 8 bytes, to cover the header. The maximum length is 65,515 bytes, which is lower than the largest number that will fit in 16 bits because of the size limit on IP packets. 
· An optional Checksum is also provided for extra reliability. It checksums the header, the data, and a conceptual IP pseudo header. When performing this computation, the Checksum field is set to zero and the data field is padded out with an additional zero byte if its length is an odd number. 
· The checksum algorithm is simply to add up all the 16-bit words in one’s complement and to take the one’s complement of the sum.
2. Remote procedure call: 
· In a certain sense, sending a message to a remote host and getting a reply back is a lot like making a function call in a programming language. The idea behind RPC is to make a remote procedure call look as much as possible like a local one. 
· In the simplest form, to call a remote procedure, the client program must be bound with a small library procedure, called the client stub that represents the server procedure in the client’s address space. 
· Similarly, the server is bound with a procedure called the server stub. These procedures hide the fact that the procedure call from the client to the server is not local. The actual steps in making an RPC are shown in Fig. 4.17. 
Step 1 is the client calling the client stub. This call is a local procedure call, with the parameters pushed onto the stack in the normal way. 
 Step 2 is the client stub packing the parameters into a message and making a system call to send the message. Packing the parameters is called marshaling. 
 Step 3 is the operating system sending the message from the client machine to the server machine. 


[image: ]
Figure 4.17: Steps in making a remote procedure call, the stubs are shaded

Step 4 is the operating system passing the incoming packet to the server stub. 
 Finally, step 5 is the server stub calling the server procedure with the unmarshaled parameters. 
· The reply traces the same path in the other direction. 
· The key item to note here is that the client procedure, written by the user, just makes a normal (i.e., local) procedure call to the client stub, which has the same name as the server procedure. Since the client procedure and client stub are in the same address space, the parameters are passed in the usual way.  
· Similarly, the server procedure is called by a procedure in its address space with the parameters it expects. To the server procedure, nothing is unusual.
3. Real-Time Transport Protocols 
· Client-server RPC is one area in which UDP is widely used. Another one is for real-time multimedia applications. 
· In particular, as Internet radio, Internet telephony, music-on-demand, videoconferencing, video-on-demand, and other multimedia applications became more commonplace, people have discovered that each application was reinventing more or less the same real-time transport protocol. Thus was RTP (Real-time Transport Protocol) born? 
· It is described in RFC 3550 and is now in widespread use for multimedia applications. There are two aspects of real-time transport. The first is the RTP protocol for transporting audio and video data in packets. The second is the processing that takes place, mostly at the receiver, to play out the audio and video at the right time.
4. RTP—the Real-Time Transport Protocol: 
· The basic function of RTP is to multiplex several real-time data streams onto single stream of UDP packets. The UDP stream can be sent to a single destination (unicasting) or to multiple destinations (multicasting). 
· Because RTP just uses normal UDP, its packets are not treated specially by the routers unless some normal IP quality-of-service features are enabled. In particular, there are no special guarantees about delivery, and packets may be lost, delayed, corrupted, etc. 
· The RTP format contains several features to help receivers work with multimedia information. The RTP header is illustrated in Fig. 4.18. It consists of three 32-bit words and potentially some extensions.
[image: ]
Figure 4.18: The RTP header
· The first word contains the Version field, which is already at 2. 
· The P bit indicates that the packet has been padded to a multiple of 4 bytes. 
· The X bit indicates that an extension header is present. 
· The CC field tells how many contributing sources are present, from 0 to 15. 
· The M bit is an application-specific marker bit. It can be used to mark the start of a video frame, the start of a word in an audio channel, or something else that the application understands. 
· The Payload type field tells which encoding algorithm has been used (e.g., uncompressed 8-bit audio, MP3, etc.). 
· The Sequence number is just a counter that is incremented on each RTP packet sent. It is used to detect lost packets.
· The Timestamp is produced by the stream’s source to note when the first sample in the packet was made. 
· The Synchronization source identifier tells which stream the packet belongs to. It is the method used to multiplex and demultiplex multiple data streams onto single stream of UDP packets. 
· Finally, the Contributing source identifiers, if any, are used when mixers are present. 
5. RTCP—the Real-time Transport Control Protocol 
· RTP has a little sister protocol (little sibling protocol?) called RTCP (Realtime Transport Control Protocol). It is defined along with RTP in RFC 3550 and handles feedback, synchronization, and the user interface. It does not transport any media samples.
· The first function can be used to provide feedback on delay, variation in delay or jitter, bandwidth, congestion, and other network properties to the sources. This information can be used by the encoding process to increase the data rate (and give better quality) when the network is functioning well and to cut back the data rate when there is trouble in the network. By providing continuous feedback, the encoding algorithms can be continuously adapted to provide the best quality possible under the current circumstances.
· RTCP also handles interstream synchronization. The problem is that different streams may use different clocks, with different granularities and different drift rates. RTCP can be used to keep them in sync.
· Finally, RTCP provides a way for naming the various sources (e.g., in ASCII text). This information can be displayed on the receiver’s screen to indicate who is talking at the moment.



II. TCP (Transmission Control Protocol):
· UDP is a simple protocol and it has some very important uses, such as client server interactions and multimedia, but for most Internet applications, reliable, sequenced delivery is needed. UDP cannot provide this, so another protocol is required. It is called TCP and is the main workhorse of the Internet.
1. Introduction to TCP: 
· TCP (Transmission Control Protocol) was specifically designed to provide a reliable end-to-end byte stream over an unreliable internetwork. An internetwork differs from a single network because different parts may have wildly different topologies, bandwidths, delays, packet sizes, and other parameters. 
· TCP was designed to dynamically adapt to properties of the internetwork and to be robust in the face of many kinds of failures. TCP was formally defined in RFC 793 in September 1981. 
· As time went on, many improvements have been made, and various errors and inconsistencies have been fixed. To give you a sense of the extent of TCP, the important RFCs are now RFC 793 plus: clarifications and bug fixes in RFC 1122; extensions for high-performance in RFC 1323. 
· Selective acknowledgements in RFC 2018; congestion control in RFC 2581; repurposing of header fields for quality of service in RFC 2873; improved retransmission timers in RFC 2988; and explicit congestion notification in RFC 3168. The IP layer gives no guarantee that datagrams will be delivered properly, nor any indication of how fast datagrams may be sent.
· It is up to TCP to send datagrams fast enough to make use of the capacity but not cause congestion, and to time out and retransmit any datagrams that are not delivered. Datagrams that do arrive may well do so in the wrong order; it is also up to TCP to reassemble them into messages in the proper sequence.

2. The TCP Service Model: 
· TCP service is obtained by both the sender and the receiver creating end points, called sockets. Each socket has a socket number (address) consisting of the IP address of the host and a 16-bit number local to that host, called a port. A port is the TCP name for a TSAP. 
· For TCP service to be obtained, a connection must be explicitly established between a socket on one machine and a socket on another machine. A socket may be used for multiple connections at the same time. In other words, two or more connections may terminate at the same socket. 
· Port numbers below 1024 are reserved for standard services that can usually only be started by privileged users (e.g., root in UNIX systems). They are called well-known ports. 
· For example, any process wishing to remotely retrieve mail from a host can connect to the destination host’s port 143 to contact its IMAP daemon. The list of well-known ports is given at www.iana.org. Over 700 have been assigned. A few of the better-known ones are listed in Fig. 4.19
[image: ].
Figure 4.19: Some assigned ports
· All TCP connections are full duplex and point-to-point. Full duplex means that traffic can go in both directions at the same time. Point-to-point means that each connection has exactly two end points. TCP does not support multicasting or broadcasting. 
· A TCP connection is a byte stream, not a message stream. Message boundaries are not preserved end to end.

3. The TCP Protocol: 
· A key feature of TCP, and one that dominates the protocol design, is that every byte on a TCP connection has its own 32-bit sequence number. When the Internet began, the lines between routers were mostly 56-kbps leased lines, so a host blasting away at full speed took over 1 week to cycle through the sequence numbers. 
· The sending and receiving TCP entities exchange data in the form of segments. A TCP segment consists of a fixed 20-byte header (plus an optional part) followed by zero or more data bytes. The TCP software decides how big segments should be. 
· It can accumulate data from several writes into one segment or can split data from one write over multiple segments. Two limits restrict the segment size. First, each segment, including the TCP header, must fit in the 65,515- byte IP payload. Second, each link has an MTU (Maximum Transfer Unit). 
· Each segment must fit in the MTU at the sender and receiver so that it can be sent and received in a single, unfragmented packet. However, it is still possible for IP packets carrying TCP segments to be fragmented when passing over a network path for which some link has a small MTU. 
· If this happens, it degrades performance and causes other problems. Instead, modern TCP implementations perform path MTU discovery by using the technique outlined in RFC 1191. This technique uses ICMP error messages to find the smallest MTU for any link on the path. TCP then adjusts the segment size downwards to avoid fragmentation. 
· The basic protocol used by TCP entities is the sliding window protocol with a dynamic window size. When a sender transmits a segment, it also starts a timer. When the segment arrives at the destination, the receiving TCP entity sends back a segment (with data if any exist, and otherwise without) bearing an acknowledgement number equal to the next sequence number it expects to receive and the remaining window size. 
· If the sender’s timer goes off before the acknowledgement is received, the sender transmits the segment again

4. The TCP Segment Header: 
· Figure 4.20 shows the layout of a TCP segment. Every segment begins with a fixed-format, 20-byte header. The fixed header may be followed by header options. After the options, if any, up to 65,535 − 20 − 20 = 65,495 data bytes may follow, where the first 20 refer to the IP header and the second to the TCP header.
· Segments without any data are legal and are commonly used for acknowledgements and control messages.





[image: ]
Figure 4.20: The TCP Header

· The Source port and Destination port fields identify the local end points of the connection. The source and destination end points together identify the connection. This connection identifier is called a 5 tuple because it consists of five pieces of information: the protocol (TCP), source IP and source port, and destination IP and destination port.
· The Sequence number and Acknowledgement number fields perform their usual functions.  
· The TCP header length tells how many 32-bit words are contained in the TCP header. This information is needed because the Options field is of variable length, so the header is, too. 
· Now come eight 1-bit flags. CWR and ECE are used to signal congestion when ECN (Explicit Congestion Notification) is used. CWR is set to signal Congestion Window Reduced from the TCP sender to the TCP receiver so that it knows the sender has slowed down and can stop sending the ECN-Echo. 
· URG is set to 1 if the Urgent pointer is in use. The Urgent pointer is used to indicate a byte offset from the current sequence number at which urgent data are to be found.
· The ACK bit is set to 1 to indicate that the Acknowledgement number is valid. This is the case for nearly all packets. If ACK is 0, the segment does not contain an acknowledgement, so the Acknowledgement number field is ignored. 
· The PSH bit indicates PUSHed data. The receiver is hereby kindly requested to deliver the data to the application upon arrival and not buffer it until a full buffer has been received (which it might otherwise do for efficiency). 
· The RST bit is used to abruptly reset a connection that has become confused due to a host crash or some other reason. 
· The SYN bit is used to establish connections. The FIN bit is used to release a connection. 
· The Window size field tells how many bytes may be sent starting at the byte acknowledged. 
· A Checksum is also provided for extra reliability. The Options field provides a way to add extra facilities not covered by the regular header.

5. TCP Connection Establishment: 
· Connections are established in TCP by means of the three-way handshake. To establish a connection, one side, say, the server passively waits for an incoming connection by executing the LISTEN and ACCEPTS primitives in that order, either specifying a specific source or nobody in particular. 
· The other side, say, the client, executes a CONNECT primitive, specifying the IP address and port to which it wants to connect, the maximum TCP segment size it is willing to accept, and optionally some user data (e.g., a password). The CONNECT primitive sends a TCP segment with the SYN bit on and ACK bit off and waits for a response. 
· When this segment arrives at the destination, the TCP entity their checks to see if there is a process that has done a LISTEN on the port given in the Destination port field. If not, it sends a reply with the RST bit on to reject the connection.
· If some process is listening to the port, that process is given the incoming TCP segment. It can either accept or reject the connection. If it accepts, an acknowledgement segment is sent back. The sequence of TCP segments sent in the normal case is shown in Fig. 4.21(a). Note that a SYN segment consumes 1 byte of sequence space so that it can be acknowledged unambiguously.
[image: ]
Figure 4.21 (a) TCP connection establishment in the normal case. (b) Simultaneous
Connection establishment on both sides.
· In the event that two hosts simultaneously attempt to establish a connection between the same two sockets, the sequence of events is as illustrated in Fig.4.21 (b). The result of these events is that just one connection is established, not two, because connections are identified by their end points. If the first setup results in a connection identified by (x, y) and the second one does too, only one table entry is made, namely, for (x, y).

6. TCP Connection Release: 
· Although TCP connections are full duplex, to understand how connections are released it is best to think of them as a pair of simplex connections. Each simplex connection is released independently of its sibling. 
· To release a connection, either party can send a TCP segment with the FIN bit set, which means that it has no more data to transmit. When the FIN is acknowledged, that direction is shut down for new data.
· Data may continue to flow indefinitely in the other direction, however. When both directions have been shut down, the connection is released.

7. TCP Connection Management Modeling:
· The steps required establishing and release connections can be represented in a finite state machine with the 11 states listed in Fig. 4.22. In each state, certain events are legal. When a legal event happens, some action may be taken. If some other event happens, an error is reported.

· Each connection starts in the CLOSED state. It leaves that state when it does either a passive open (LISTEN) or an active open (CONNECT). If the other side does the opposite one, a connection is established and the state becomes ESTABLISHED. Connection release can be initiated by either side. When it is complete, the state returns to CLOSED.
[image: ]
Figure 4.22:  The states used in the TCP connection management finite state machine.
· TCP connection management finite state machine is shown in Fig. 4.23. The common case of a client actively connecting to a passive server is shown with heavy lines—solid for the client, dotted for the server. The lightface lines are unusual event sequences.
 [image: 6-33]

Figure 4.23. TCP connection management finite state machine. The heavy solid line is the normal path for a client. The heavy dashed line is the normal path for a server. The light lines are unusual events. Each transition is labeled with the event causing it and the action resulting from it, separated by a slash.



8. TCP Sliding Window:
· Window probe is a packet sent by the sender, who can send a 1-byte segment to force the receiver to reannounce the next byte expected and the window size.  
· Delayed acknowledgements is an optimization, where the idea is to delay acknowledgements and window updates for up to 500 msec in the hope of acquiring some data on which to hitch a free ride. 
[image: 6-34]
	Figure 4.24: Window management in TCP.
· Nagle’s algorithm is a way to reduce the bandwidth wastage by a sender that sends multiple short packets (e.g., 41-byte packets containing 1 byte of data). 
· When data come into the sender in small pieces, just send the first piece and buffer all the rest until the first piece is acknowledged. Then send all the buffered data in one TCP segment and start buffering again until the next segment is acknowledged.
· Silly window syndrome is a problem that occurs when data are passed to the sending TCP entity in large blocks, but an interactive application on the receiving side reads data only 1 byte at a time.
[image: 6-35]
Figure 4.25: Silly window syndrome.
· Clark’s solution is to prevent the receiver from sending a window update for 1 byte. Instead, it is forced to wait until it has a decent amount of space available and advertise that instead.
· Nagle’s algorithm and Clark’s solution to the silly window syndrome are complementary. Nagle was trying to solve the problem caused by the sending application delivering data to TCP a byte at a time. Clark was trying to solve the problem of the receiving application sucking the data up from TCP a byte at a time. 
· Both solutions are valid and can work together. The goal is for the sender not to send small segments and the receiver not to ask for them. 

9. TCP Timer Management: 

· Retransmission timer:  When a segment is sent, a retransmission timer is started. If the segment is acknowledged before the timer expires, the timer is stopped. If, on the other hand, the timer goes off before the acknowledgement comes in, the segment is retransmitted (and the timer started again). 
· Persistence timer is designed to prevent a deadlock situation where, the sender keeps waiting for a window update from the receiver, which is lost. When the persistence timer goes off, the sender transmits a probe to the receiver. The response to the probe gives the window size. 
· Keep alive timer:  When a connection has been idle for a long time, the keep alive timer may go off to cause one side to check whether the other side is still there. If it fails to respond, the connection is terminated. 

10. TCP Congestion Control: 
· To deal with the two problems of receiver’s capacity and network capacity, each sender maintains two windows: the window the receiver has granted and a second window, the congestion window. 
· Each reflects the number of bytes the sender may transmit. The number of bytes that may be sent is the minimum of the two windows.
· When a connection is established, the sender initializes the congestion window to the size of the maximum segment in use on the connection. It then sends one maximum segment. Each burst acknowledged doubles the congestion window.
· The congestion window keeps growing exponentially until either a timeout occurs or the receiver's window is reached. This algorithm is called slow start. 
· Internet congestion control algorithm uses a third parameter, the threshold, initially 64 KB, in addition to the receiver and congestion windows. When a timeout occurs, the threshold is set to half of the current congestion window, and the congestion window is reset to one maximum segment. 
11. The Future of TCP:
· Another proposal is SCTP (Stream Control Transmission Protocol). Its features include message boundary preservation, multiple delivery modes (e.g., unordered delivery), multihoming (backup destinations), and selective acknowledgements 






III. PERFORMANCE PROBLEMS IN COMPUTER NETWORKS:  
· Some performance problems, such as congestion, are caused by temporary resource overloads. If more traffic suddenly arrives at a router than the router can handle, congestion will build up and performance will suffer. 
· Performance also degrades when there is a structural resource imbalance. For example, if a gigabit communication line is attached to a low-end PC, the poor host will not be able to process the incoming packets fast enough and some will be lost. These packets will eventually be retransmitted, adding delay, wasting bandwidth, and generally reducing performance. 
· Overloads can also be synchronously triggered. As an example, if a segment contains a bad parameter, in many cases the receiver will thoughtfully send back an error notification. 
· Another tuning issue is setting timeouts. When a segment is sent, a timer is set to guard against loss of the segment. If the timeout is set too short, unnecessary retransmissions will occur, clogging the wires. If the timeout is set too long, unnecessary delays will occur after a segment is lost.

IV. NETWORK PERFORMANCE MEASUREMENT: 
· When a network performs poorly, its users often complain to the folks running it, demanding improvements. To improve the performance, the operators must first determine exactly what is going on. To find out what is really happening, the operators must make measurements. 
· Measurements can be made in different ways and at many locations (both in the protocol stack and physically). The most basic kind of measurement is to start a timer when beginning some activity and see how long that activity takes. 
· Other measurements are made with counters that record how often some event has happened (e.g., number of lost segments).
· Measuring network performance and parameters has many potential pitfalls. We list a few of them here. Any systematic attempt to measure network performance should be careful to avoid these. 
1) Make Sure That the Sample Size Is Large Enough 
· Do not measure the time to send one segment, but repeat the measurement, says, one million times and takes the average. 
2) Make Sure That the Samples Are Representative 
· Ideally, the whole sequence of one million measurements should be repeated at different times of the day and the week to see the effect of different network conditions on the measured quantity. 
3) Caching Can Wreak Havoc with Measurements 
· Repeating a measurement many times will return an unexpectedly fast answer if the protocols use caching mechanisms. 
4) Be Sure That Nothing Unexpected Is Going On during Your Tests 
· Making measurements at the same time that some user has decided to run a video conference over your network will often give different results than if there is no video conference. 
5) Be Careful When Using a Coarse-Grained Clock 
· Computer clocks function by incrementing some counter at regular intervals. 
6) Be Careful about Extrapolating the Results:
· Suppose that you make measurements with simulated network loads running from 0 (idle) to 0.4 (40% of capacity).



UNIT – V
INTRODUCTION TO APPLICATION LAYER
1. INTRODUCTION:
 	The application layer provides services to the user. Communication is provided using a logical connection, which means that the two application layers assume that there is an imaginary direct connection through which they can send and receive messages. 
I. Providing Services: 
All communication networks that started before the Internet were designed to provide services to network users. Most of these networks, however, were originally designed to provide one specific service. For example, the telephone network was originally designed to provide voice service: to allow people all over the world to talk to each other. This network, however, was later used for some other services, such as facsimile (fax), and enabled by users adding some extra hardware at both ends. 
The Internet was originally designed for the same purpose: to provide service to users around the world. The layered architecture of the TCP/IP protocol suite, however, makes the Internet more flexible than other communication networks such as postal or telephone networks. 
Each layer in the suite was originally made up of one or more protocols, but new protocols can be added or some protocols can be removed or replaced by the Internet authorities. However, if a protocol is added to each layer, it should be designed in such a way that it uses the services provided by one of the protocols at the lower layer. 
If a protocol is removed from a layer, care should be taken to change the protocol at the next higher layer that supposedly uses the services of the removed protocol. The application layer, however, is somewhat different from other layers in that it is the highest layer in the suite. 
The protocols in this layer do not provide services to any other protocol in the suite; they only receive services from the protocols in the transport layer. This means that protocols can be removed from this layer easily. New protocols can be also added to this layer as long as the new protocols can use the services provided by one of the transport-layer protocols. 
II. Standard and Nonstandard Protocols: 
To provide smooth operation of the Internet, the protocols used in the first four layers of the TCP/IP suite need to be standardized and documented.
A. Standard Application-Layer Protocols: 
There are several application-layer protocols that have been standardized and documented by the Internet authority, and we are using them in our daily interaction with the Internet. Each standard protocol is a pair of computer programs that interact with the user and the transport layer to provide a specific service to the user. 


B. Nonstandard Application-Layer Protocols: 
A programmer can create a nonstandard application-layer program if she can write two programs that provide service to the user by interacting with the transport layer.
III. Application-Layer Paradigms 
It should be clear that to use the Internet we need two application programs to interact with each other: one running on a computer somewhere in the world, the other running on another computer somewhere else in the world. The two programs need to send messages to each other through the Internet infrastructure. 
However, we have not discussed what the relationship should be between these programs. Should both application programs be able to request services and provide services, or should the application programs just do one or the other? 
Two paradigms have been developed during the lifetime of the Internet to answer this question: the client-server paradigm and the peer-to-peer paradigm. 
A. Traditional Paradigm: Client-Server: 
The traditional paradigm is called the client-server paradigm. It was the most popular paradigm until a few years ago. In this paradigm, the service provider is an application program, called the server process; it runs continuously, waiting for another application program, called the client process, to make a connection through the Internet and ask for service. 
There are normally some server processes that can provide a specific type of service, but there are many clients that request service from any of these server processes. The server process must be running all the time; the client process is started when the client needs to receive service. 
B. New Paradigm: Peer-to-Peer: 
A new paradigm, called the peer-to-peer paradigm (often abbreviated P2P paradigm) has emerged to respond to the needs of some new applications. In this paradigm, there is no need for a server process to be running all the time and waiting for the client processes to connect. The responsibility is shared between peers. 
A computer connected to the Internet can provide service at one time and receive service at another time. A computer can even provide and receive services at the same time.
2. CLIENT-SERVER PROGRAMMING: 
In a client-server paradigm, communication at the application layer is between two running application programs called processes: a client and a server. 
A client is a running program that initializes the communication by sending a request; a server is another application program that waits for a request from a client. 
The server handles the request received from a client, prepares a result, and sends the result back to the client. This definition of a server implies that a server must be running when a request from a client arrives, but the client needs to be run only when it is needed. 
This means that if we have two computers connected to each other somewhere, we can run a client process on one of them and the server on the other. However, we need to be careful that the server program is started before we start running the client program. 
I. Application Programming Interface: 
A client process communicate with a server process with the help of a computer program which is normally written in a computer language with a predefined set of instructions that tells the computer what to do. 
A computer language has a set of instructions for mathematical operations, a set of instructions for string manipulation, a set of instructions for input/output access, and so on. 
If we need a process to be able to communicate with another process, we need a new set of instructions to tell the lowest four layers of the TCP/IP suite to open the connection, send and receive data from the other end, and close the connection. A set of instructions of this kind is normally referred to as an application programming interface (API). 
An interface in programming is a set of instructions between two entities. In this case, one of the entities is the process at the application layer and the other is the operating system that encapsulates the first four layers of the TCP/IP protocol suite.
Several APIs have been designed for communication. One of the most common one is: socket interface. The socket interface is a set of instructions that provide communication between the application layer and the operating system, as shown in Figure 5.1.
[image: ]
              FIGURE 5.1: Position Of The Socket Interface
It is a set of instructions that can be used by a process to communicate with another process. The idea of sockets allows us to use the set of all instructions already designed in a programming language for other sources and sinks. 
               For example, in most computer languages, like C, C++, or Java, we have several instructions that can read and write data to other sources and sinks such as a keyboard (a source), a monitor (a sink), or a file (source and sink). We can use the same instructions to read from or write to sockets.
II. Sockets: 
Although a socket is supposed to behave like a terminal or a file, it is not a physical entity like them; it is an abstraction. It is an object that is created and used by the application program. 
A. Socket Addresses: 
The interaction between a client and a server is two-way communication. In a two-way communication, we need a pair of addresses: local (sender) and remote (receiver). The local address in one direction is the remote address in the other direction and vice versa. 
Since communication in the client-server paradigm is between two sockets, we need a pair of socket addresses for communication: a local socket address and a remote socket address. However, we need to define a socket address in terms of identifiers used in the TCP/IP protocol suite. 
A socket address should first define the computer on which a client or a server is running. Socket address should be a combination of an IP address (32 bit) and a port number (16 bit).
Since a socket defines the end-point of the communication, we can say that a socket is identified by a pair of socket addresses, a local and a remote. 
B. Finding Socket Addresses: 
How can a client or a server find a pair of socket addresses for communication? The situation is different for each site. 
i. Server Site: The server needs a local (server) and a remote (client) socket address for communication. 
a. Local Socket Address 
The local (server) socket address is provided by the operating system. The operating system knows the IP address of the computer on which the server process is running. The port number of a server process, however, needs to be assigned. 
If the server process is a standard one defined by the Internet authority, a port number is already assigned to it. For example, the assigned port number for a Hypertext Transfer Protocol (HTTP) is the integer 80, which cannot be used by any other process. 
b. Remote Socket Address 
The remote socket address for a server is the socket address of the client that makes the connection. Since the server can serve many clients, it does not know beforehand the remote socket address for communication. 
The server can find this socket address when a client tries to connect to the server. The client socket address, which is contained in the request packet sent to the server, becomes the remote socket address that is used for responding to the client.
ii. Client Site: The client also needs a local (client) and a remote (server) socket address for communication. 
a. Local Socket Address 
The local (client) socket address is also provided by the operating system. The operating system knows the IP address of the computer on which the client is running. The port number, however, is a 16-bit temporary integer that is assigned to a client process each time the process needs to start the communication. 
The port number, however, needs to be assigned from a set of integers defined by the Internet authority and called the ephemeral (temporary) port numbers. The operating system, however, needs to guarantee that the new port number is not used by any other running client process. 
b. Remote Socket Address 
Finding the remote (server) socket address for a client, however, needs more work. When a client process starts, it should know the socket address of the server it wants to connect to.
III. Using Services of the Transport Layer: 
A pair of processes provides services to the users of the Internet, human or programs. A pair of processes, however, needs to use the services provided by the transport layer for communication because there is no physical communication at the application layer.
3. WORLD WIDE WEB AND HTTP: 

I. World Wide Web: 
The idea of the Web was first proposed by Tim Berners-Lee in 1989. The Web today is a repository of information in which the documents, called web pages, are distributed all over the world and related documents are linked together. 
The popularity and growth of the Web can be related to two terms in the above statement: distributed and linked. Distribution allows the growth of the Web. Each web server in the world can add a new web page to the repository and announce it to all Internet users without overloading a few servers. 
Linking allows one web page to refer to another web page stored in another server somewhere else in the world. The linking of web pages was achieved using a concept called hypertext, which was introduced many years before the advent of the Internet. 
The idea was to use a machine that automatically retrieved another document stored in the system when a link to it appeared in the document. The Web implemented this idea electronically to allow the linked document to be retrieved when the link was clicked by the user. 
Today, the term hypertext, coined to mean linked text documents, has been changed to hypermedia, to show that a web page can be a text document, an image, an audio file, or a video file. 
Architecture: 
The WWW today is a distributed client-server service, in which a client using a browser can access a service using a server. However, the service provided is distributed over many locations called sites. Each site holds one or more web pages. 
Each web page, however, can contain some links to other web pages in the same or other sites. In other words, a web page can be simple or composite. A simple web page has no links to other web pages; a composite web page has one or more links to other web pages. Each web page is a file with a name and address.
a. Web Client (Browser): A variety of vendors offer commercial browsers that interpret and display a web page, and all of them use nearly the same architecture. Each browser usually consists of three parts: a controller, client protocols, and interpreters (figure 5.2).
[image: ]
Figure 5.2: Browser
The controller receives input from the keyboard or the mouse and uses the client programs to access the document. After the document has been accessed, the controller uses one of the interpreters to display the document on the screen. 
The client protocol can be one of the protocols described later, such as HTTP or FTP. The interpreter can be HTML, Java, or JavaScript, depending on the type of document. Some commercial browsers include Internet Explorer, Netscape Navigator, and Firefox. 
b. Web Server: The web page is stored at the server. Each time a request arrives, the corresponding document is sent to the client. To improve efficiency, servers normally store requested files in a cache in memory; memory is faster to access than a disk. 
                 A server can also become more efficient through multithreading or multiprocessing. In this case, a server can answer more than one request at a time. Some popular web servers include Apache and Microsoft Internet Information Server.
c. Uniform Resource Locator (URL): 
A web page, as a file, needs to have a unique identifier to distinguish it from other web pages. To define a web page, we need three identifiers: host, port, and path. 
However, before defining the web page, we need to tell the browser what client-server application we want to use, which is called the protocol. This means we need four identifiers to define the web page. 
The first is the type of vehicle to be used to fetch the web page; the last three make up the combination that defines the destination object (web page). 
i. Protocol. The first identifier is the abbreviation for the client-server program that we need in order to access the web page.
Although most of the time the protocol is HTTP (Hyper Text Transfer Protocol), we can also use other protocols such as FTP (File Transfer Protocol). 
ii. Host. The host identifier can be the IP address of the server or the unique name given to the server. IP addresses can be defined in dotted decimal notation. 
iii. Port. The port, a 16-bit integer, is normally predefined for the client-server application. 
iv. Path. The path identifies the location and the name of the file in the underlying operating system. The format of this identifier normally depends on the operating system. 
To combine these four pieces together, the uniform resource locator (URL) has been designed; it uses three different separators between the four pieces as shown below:
[image: ]
d. Web Documents: 
The documents in the WWW can be grouped into three broad categories: static, dynamic, and active. 
i. Static Documents: 
Static documents are fixed-content documents that are created and stored in a server. The client can get a copy of the document only. In other words, the contents of the file are determined when the file is created, not when it is used. 
Static documents are prepared using one of several languages: HyperText Markup Language (HTML), Extensible Markup Language (XML), Extensible Style Language (XSL), and Extensible Hypertext Markup Language (XHTML). 
[image: ]
Figure 5.3: Static documents
Eg. HTML:
Hypertext Markup Language (HTML) is a language for creating Web pages. The term markup language comes from the book publishing industry. Before a book is typeset and printed, a copy editor reads the manuscript and puts marks on it. These marks tell the compositor how to format the text. For example, if the copy editor wants part of a line to be printed in boldface, he or she draws a wavy line under that part. In the same way, data for a Web page are formatted for interpretation by a browser.
Let us clarify the idea with an example. To make part of a text displayed in boldface with HTML, we put beginning and ending boldface tags (marks) in the text, as shown in Figure 5.4
[image: ]
Figure 5.4: Boldface Tags
The two tags <B> and </B> are instructions for the browser. When the browser sees these two marks, it knows that the text must be boldfaced (see Figure 5.5).
[image: ]
Figure 5.5: Effect of Boldface Tags
ii. Dynamic Documents: 
A dynamic document is created by a web server whenever a browser requests the document. When a request arrives, the web server runs an application program or a script that creates the dynamic document. 
	The server returns the result of the program or script as a response to the browser that requested the document. Because a fresh document is created for each request, the contents of a dynamic document may vary from one request to another. A very simple example of a dynamic document is the retrieval of the time and date from a server.
[image: ]
Figure 5.6: Dynamic Documents

Eg., Common Gateway Interface (CGI)
The Common Gateway Interface (CGI) is a technology that creates and handles dynamic documents. CGI is a set of standards that defines how a dynamic document is written, how data are input to the program, and how the output result is used.
The term common in CGI indicates that the standard defines a set of rules that is common to any language or platform. The term gateway here means that a CGI program can be used to access other resources such as databases, graphical packages, and so on. The term interface here means that there is a set of predefined term, variables, calls, and so on that can be used in any CGI program. 
The input from a browser to a server is sent by using aform. If the information in a form is small (such as a word), it can be appended to the URL after a question mark. For example, the following URL is carrying form information (23, a value):
http://www.deanzalcgi-binlprog.pl?23
If the input from a browser is too long to fit in the query string, the browser can ask the server to send a form. The infonnation in the form can be used as the input to the CGI program.
Output The whole idea of CGI is to execute a CGI program at the server site and send the output to the client (browser). The output is usually plain text or a text with HTML structures; however, the output can be a variety of other things. It can be graphics or binary data, a status code, instructions to the browser to cache the result, or instructions to the server to send an existing document instead of the actual output.

iii. Active Documents: 
	For many applications, we need a program or a script to be run at the client site. These are called active documents. For example, suppose we want to run a program that creates animated graphics on the screen or a program that interacts with the user.
E.g., Java Applets
An applet is a program written in Java on the server. It is compiled and ready to be run. The document is in byte-code (binary) format. The client process (browser) creates an instance of this applet and runs it. A Java applet can be run by the browser in two ways. In the first method, the browser can directly request the Java applet program in the URL and receive the applet in binary form. In the second method, the browser can retrieve and run an HTML file that has embedded the address of the applet as a tag. Figure 5.7 shows how Java applets are used in the first method; the second is similar but needs two transactions.
[image: ]
Figure 5.7: Active Documents using Java Applet
E.g., JavaScript
The idea of scripts in dynamic documents can also be used for active documents. If the active part of the document is small, it can be written in a scripting language; then it can be interpreted and run by the client at the same time. The script is in source code (text) and not in binary form. The scripting technology used in this case is usually JavaScript. JavaScript, which bears a small resemblance to Java, is a very high level scripting language developed for this purpose. Figure 5.8 shows how JavaScript is used to create an active document.
[image: ]
Figure 5.8: Active Documents using Java Script


II. Hyper Text Transfer Protocol (HTTP): 
The Hyper Text Transfer Protocol (HTTP) is used to define how the client-server programs can be written to retrieve web pages from the Web. An HTTP client sends a request; an HTTP server returns a response. The server uses the port number 80; the client uses a temporary port number. HTTP uses the services of TCP, which, as discussed before, is a connection-oriented and reliable protocol. 
A. HTTP Transactions:
Http uses the services of TCP. It is a stateless Protocol. The client initializes the transactions by sending a request message. The server replies by sending a response. The following figure shows HTTP transactions.
[image: Related image]
Figure 5.9: HTTP Transaction
 Messages:
The formats of the request and response messages are similar; both are shown in Figure 5.10. A request message consists of a request line, a header, and sometimes a body. A response message consists of a status line, a header, and sometimes a body.
[image: ]
Figure 5.10: Request and response messages
i. Request and Status Lines: The first line in a request message is called a request line; the first line in the response message is called the status line. There is one common field, as shown in Figure 5.11.
[image: ]
Figure 5.11: Request and Status lines
Request type: This field is used in the request message. In version 1.1 of HTTP, several request types are defined. The request type is categorized into methods as defined in Table 5.1
Table 5.1:  Methods
[image: ]
URL: defines the address and name of the corresponding web page
Version: The most current version of HTTP is 1.1.
Status code: This field is used in the response message. The status code field is similar to those in the FTP and the SMTP protocols. It consists of three digits. Whereas the codes in the 100 range are only informational, the codes in the 200 range indicate a successful request. The codes in the 300 range redirect the client to another URL, and the codes in the 400 range indicate an error at the client site. Finally, the codes in the 500 range indicate an error at the server site. We list the most common codes in Table 5.2.
Table 5.2: Status codes
[image: ]
[image: ]
Status phrase: This field is used in the response message. It explains the status code in text form. Table 5.2 also gives the status phrase.
ii. Header:
The header exchanges additional information between the client and the server. For example, the client can request that the document be sent in a special format, or the server can send extra information about the document. The header can consist of one or more header lines. Each header line has a header name; a colon, a space, and a header value (see Figure 5.12). A header line belongs to one of four categories: general header, request header, response header, and entity header. A request message can contain only general, request, and entity headers. A response message, on the other hand, can contain only general, response, and entity headers.
[image: ]
Figure 5.12: Header format
General header: The general header gives general information about the message and can be present in both a request and a response. Table 5.3 lists some general headers with their descriptions.
Table 5.3: General headers
[image: ]
Request header: The request header can be present only in a request message. It specifies the client's configuration and the client's preferred document format. See Table 5.4 for a list of some request headers and their descriptions.
Table 5.4:  Request headers
[image: ]
Response header: The response header can be present only in a response message. It specifies the server's configuration and special information about the request. See Table 5.5 for a list of some response headers with their descriptions.
Table 5.5: Response headers
[image: ]
Entity header: The entity header gives information about the body of the document. Although it is mostly present in response messages, some request messages, such as POST or PUT methods, that contain a body also use this type of header. See Table 5.6 for a list of some entity headers and their descriptions.
Table 5.6:  Entity headers
[image: ]
Body: The body can be present in a request or response message. Usually, it contains the document to be sent or received.
B. Non persistent versus Persistent Connections: 
If the web pages, objects to be retrieved, are located on different servers, we do not have any other choice than to create a new TCP connection for retrieving each object. However, if some of the objects are located on the same server, we have two choices: to retrieve each object using a new TCP connection or to make a TCP connection and retrieve them all. The first method is referred to as a nonpersistent connection, the second as a persistent connection. 
Nonpersistent Connections 
In a nonpersistent connection, one TCP connection is made for each request/response. 
The following lists the steps in this strategy: 
1. The client opens a TCP connection and sends a request. 
2. The server sends the response and closes the connection. 
3. The client reads the data until it encounters an end-of-file marker; it then closes the connection. 
Persistent Connections 
HTTP version 1.1 specifies a persistent connection by default. In a persistent connection, the server leaves the connection open for more requests after sending a response. 
The server can close the connection at the request of a client or if a time-out has been reached. The sender usually sends the length of the data with each response. However, there are some occasions when the sender does not know the length of the data.
This is the case when a document is created dynamically or actively. In these cases, the server informs the client that the length is not known and closes the connection after sending the data so the client knows that the end of the data has been reached. Time and resources are saved using persistent connections.  Only one set of buffers and variables needs to be set for the connection at each site. The round trip time for connection establishment and connection termination is saved. 
C. Web Caching: Proxy Servers: 
HTTP supports proxy servers. A proxy server is a computer that keeps copies of responses to recent requests. The HTTP client sends a request to the proxy server. The proxy server checks its cache. 
If the response is not stored in the cache, the proxy server sends the request to the corresponding server. Incoming responses are sent to the proxy server and stored for future requests from other clients. 
The proxy server reduces the load on the original server, decreases traffic, and improves latency. However, to use the proxy server, the client must be configured to access the proxy instead of the target server. 
D. HTTP Security: 
HTTP per se does not provide security. HTTP can be run over the Secure Socket Layer (SSL). In this case, HTTP is referred to as HTTPS. HTTPS provides confidentiality, client and server authentication, and data integrity.
4. FTP: 
File Transfer Protocol (FTP) is the standard protocol provided by TCP/IP for copying a file from one host to another. Although transferring files from one system to another seems simple and straightforward, some problems must be dealt with first. 
Although we can transfer files using HTTP, FTP is a better choice to transfer large files or to transfer files using different formats. Figure 5.13 shows the basic model of FTP. The client has three components: the user interface, the client control process, and the client data transfer process. The server has two components: the server control process and the server data transfer process.
[image: ]
Figure 5.13: FTP
The control connection is made between the control processes. The data connection is made between the data transfer processes. Separation of commands and data transfer makes FTP more efficient. The control connection uses very simple rules of communication. We need to transfer only a line of command or a line of response at a time. The data connection, on the other hand, needs more complex rules due to the variety of data types transferred.
a. Two Connections: 
The two connections in FTP have different lifetimes. The control connection remains connected during the entire interactive FTP session. The data connection is opened and then closed for each file transfer activity.  FTP uses two well-known TCP ports: port 21 is used for the control connection, and port 20 is used for the data connection. 
i. Control Connection
FTP uses the same approach as SMTP to communicate across the control connection. It uses the 7-bit ASCII character set (see Figure 5.14). Communication is achieved through commands and responses. This simple method is adequate for the control connection because we send one command (or response) at a time. Each command or response is only one short line, so we need not worry about file format or file structure. Each line is terminated with a two-character (carriage return and line feed) end-of-line token.
[image: ]
Figure 5.14: Control Connection


ii. Data Connection
The purpose of the data connection is different from that of the control connection. We want to transfer files through the data connection. File transfer occurs over the data connection under the control of the commands sent over the control connection. However, we should remember that file transfer in FTP means one of three things:
· A file is to be copied from the server to the client. This is called retrieving aft/e. It is done under the supervision of the RETR command,
· A file is to be copied from the client to the server. This is called storing aft/e. It is done under the supervision of the STOR command.
· A list of directory or file names is to be sent from the server to the client. This is done under the supervision of the LIST command. Note that FTP treats a list of directory or file names as a file. It is sent over the data connection.
The client must define the type of file to be transferred, the structure of the data, and the transmission mode. Before sending the file through the data connection, we prepare for transmission through the control connection. The heterogeneity problem is resolved by defining three attributes of communication: file type, data structure, and transmission mode (see Figure 5.15).
[image: ]
Figure 5.15: Data Connection
 File Type: FTP can transfer one of the following file types across the data connection: an ASCII file, EBCDIC file, or image file. The ASCII file is the default format for transferring text files. Each character is encoded using 7-bit ASCII. The sender transforms the file from its own representation into ASCII characters, and the receiver transforms the ASCII characters to its own representation. If one or both ends of the connection use EBCDIC encoding (the file format used by IBM), the file can be transferred using EBCDIC encoding. The image file is the default format for transferring binary files. The file is sent as continuous streams of bits without any interpretation or encoding. This is mostly used to transfer binary files such as compiled programs. 
Data Structure: FTP can transfer a file across the data connection by using one of the following interpretations about the structure of the data: file structure, record structure, and page structure. In the file structure format, the file is a continuous stream of bytes. In the record structure, the file is divided into records. This can be used only with text files. In the page structure, the file is divided into pages, with each page having a page number and a page header. The pages can be stored and accessed randomly or sequentially.
Transmission Mode: FTP can transfer a file across the data connection by using one of the following three transmission modes: stream mode, block mode, and compressed mode. The stream mode is the default mode. Data are delivered from FTP to TCP as a continuous stream of bytes. 
TCP is responsible for chopping data into segments of appropriate size. If the data are simply a stream of bytes (file structure), no end-of-file is needed. End-of-file in this case is the closing of the data connection by the sender. If the data are divided into records (record structure), each record will have a 
 I-byte end of- record (EOR) character and the end of the file will have a I-byte end-of-file (EOF) character. 
In block mode, data can be delivered from FTP to TCP in blocks. In this case, each block is preceded by a 3-byte header. The first byte is called the block descriptor; the next 2 bytes define the size of the block in bytes. 
In the compressed mode, if the file is big, the data can be compressed. The compression method normally used is run-length encoding. In this method, consecutive appearances of a data unit are replaced by one occurrence and the number of repetitions. In a text file, this is usually spaces (blanks). In a binary file, null characters are usually compressed.
b. Anonymous FTP:
To use FTP, a user needs an account (user name) and a password on the remote server. Some sites have a set of files available for public access, to enable anonymous FTP. To access these files, a user does not need to have an account or password. Instead, the user can use anonymous as the user name and guest as the password. User access to the system is very limited. Some sites allow anonymous users only a subset of commands. For example, most sites allow the user to copy some files, but do not allow navigation through the directories.
5. ELECTRONIC MAIL: 
Electronic mail (or e-mail) allows users to exchange messages. The nature of this application, however, is different from other applications discussed so far. In an application such as HTTP or FTP, the server program is running all the time, waiting for a request from a client. When the request arrives, the server provides the service. There is a request and there is a response.   In the case of electronic mail, the situation is different. 
· First, e-mail is considered a one-way transaction. When Alice sends an email to Bob, she may expect a response, but this is not a mandate. Bob may or may not respond. If he does respond, it is another one-way transaction. 
· Second, it is neither feasible nor logical for Bob to run a server program and wait until someone sends an e-mail to him. Bob may turn off his computer when he is not using it. 
This means that the idea of client/server programming should be implemented in another way: using some intermediate computers (servers). The users run only client programs when they want and the intermediate servers apply the client/server paradigm 
a. Architecture: 
To explain the architecture of e-mail, we give four scenarios. We begin with the simplest situation and add complexity as we proceed. The fourth scenario is the most common in the exchange of e-mail.
1. First scenario: When the sender and the receiver of an e-mail are on the same mail server, we need only two user agents.
[image: ]
	2. Second scenario: When the sender and the receiver of an e-mail are on different mail servers, we need two UAs and a pair of MTAs (client and server).
[image: ]
3. Third scenario: When the sender is connected to the mail server via a LAN or a WAN, we need two UAs and two pairs of MTAs (client and server).
[image: ]
	4. Fourth scenario: When both sender and receiver are connected to the mail server via a LAN or a WAN, we need two UAs, two pairs of MTAs (client and server), and a pair of MAAs (client and server). This is the most common situation today.
[image: ]
	In the common scenario, the sender and the receiver of the e-mail, Alice and Bob respectively, are connected via a LAN or a WAN to two mail servers. The administrator has created one mailbox for each user where the received messages are stored.
A mailbox is part of a server hard drive, a special file with permission restrictions. Only the owner of the mailbox has access to it. The administrator has also created a queue (spool) to store messages waiting to be sent. 
A simple e-mail from Alice to Bob takes nine different steps.
1. Alice and Bob use three different agents: a user agent (UA), a message transfer agent (MTA), and a message access agent (MAA). 
2. When Alice needs to send a message to Bob, she runs a UA program to prepare the message and send it to her mail server. 
3. The mail server at her site uses a queue (spool) to store messages waiting to be sent. 
4. The message, however, needs to be sent through the Internet from Alice’s site to Bob’s site using an MTA. 
5. Here two message transfer agents are needed: one client and one server. 
6. Like most client-server programs on the Internet, the server needs to run all the time because it does not know when a client will ask for a connection. 
7. The client, on the other hand, can be triggered by the system when there is a message in the queue to be sent. 
8. The user agent at the Bob site allows Bob to read the received message. 
9. Bob later uses an MAA client to retrieve the message from an MAA server running on the second server. 
b. User Agent: 
The first component of an electronic mail system is the user agent (UA). It provides service to the user to make the process of sending and receiving a message easier. 
A user agent is a software package (program) that composes reads, replies to, and forwards messages. It also handles local mailboxes on the user computers. 
Services Provided by a User Agent
A user agent is a software package (program) that composes reads, replies to, and forwards messages. It also handles mailboxes. Figure 5.16 shows the services of a typical user agent.
[image: ]
Figure 5.16: Services of user agent
Composing Messages A user agent helps the user compose the e-mail message to be sent out. Most user agents provide a template on the screen to be filled in by the user. Some even have a built-in editor that can do spell checking, grammar checking, and other tasks expected from a sophisticated word processor. A user, of course, could alternatively use his or her favorite text editor or word processor to create the message and import it, or cut and paste it, into the user agent template.
Reading Messages The second duty of the user agent is to read the incoming messages. When a user invokes a user agent, it first checks the mail in the incoming mailbox. Most user agents show a one-line summary of each received mail. Each e-mail contains the following fields.
1. A number field.
2. A flag field that shows the status of the mail such as new, already read but not replied to, or read and replied to.
3. The size of the message.
4. The sender.
5. The optional subject field.
Replying to Messages After reading a message, a user can use the user agent to reply to a message. A user agent usually allows the user to reply to the original sender or to reply to all recipients of the message. The reply message may contain the original message (for quick reference) and the new message.
Forwarding Messages Replying is defined as sending a message to the sender or recipients of the copy. Forwarding is defined as sending the message to a third party. A user agent allows the receiver to forward the message, with or without extra comments, to a third party.
Handling Mailboxes A user agent normally creates two mailboxes: an inbox and an outbox. Each box is a file with a special format that can be handled by the user agent. The inbox keeps all the received e-mails until they are deleted by the user. The outbox keeps all the sent e-mails until the user deletes them. Most user agents today are capable of creating customized mailboxes.
User Agent Types
There are two types of user agents: command-driven and GUI-based.
Command-Driven:  Command-driven user agents belong to the early days of electronic mail. They are still present as the underlying user agents in servers. A command-driven user agent normally accepts a one-character command from the keyboard to perform its task. For example, a user can type the character, at the command prompt, to reply to the sender of the message, or type the character R to reply to the sender and all recipients. Some examples of command-driven user agents are mail, pine, and elm.
GUI-Based Modem user agents are GUI-based. They contain graphical-user interface (GUI) components that allow the user to interact with the software by using both the keyboard and the mouse. They have graphical components such as icons, menu bars, and windows that make the services easy to access. Some examples of GUI-based user agents are Eudora, Microsoft's Outlook, and Netscape.
Sending Mail
To send mail, the user, through the UA, creates mail that looks very similar to postal mail. It has an envelope and a message.
Envelope The envelope usually contains the sender and the receiver addresses. 
Message The message contains the header and the body. The header of the message defines the sender, the receiver, the subject of the message, and some other information (such as encoding type, as we see shortly). The body of the message contains the actual information to be read by the recipient.
Receiving Mail 
The user agent is triggered by the user (or a timer). If a user has mail, the VA informs the user with a notice. If the user is ready to read the mail. A list is displayed in which each line contains a summary of the information about a particular message in the mailbox. The summary usually includes the sender mail address, the subject, and the time the mail was sent or received. The user can select any of the messages and display its contents on the screen.
Addresses To deliver mail, a mail handling system must use an addressing system with unique addresses.
[image: ]
Figure 5.17: E-mail address
Local Part The local part defines the name of a special file, called the user mailbox, where all the mail received for a user is stored for retrieval by the message access agent.
Domain Name The second part of the address is the domain name. An organization usually selects one or more hosts to receive and send e-mail; the hosts are sometimes called mail servers or exchangers. The domain name assigned to each mail exchanger either comes from the DNS database or is a logical name (for example, the name of the organization).
Mailing List 
Electronic mail allows one name, an alias, to represent several different e-mail addresses; this is called a mailing list. if there is a mailing list for the defined alias, separate messages, one for each entry in the list, must be prepared and handed to the MTA. If there is no mailing list for the alias, the name itself is the receiving address and a single message is delivered to the mail transfer entity.
MIME
Electronic mail has a simple structure.
Multipurpose Internet Mail Extensions (MIME) is a supplementary protocol that allows non-ASCII data to be sent through e-mail. MIME transforms non-ASCII data at the sender site to NVT ASCII data and delivers them to the client MTA to be sent through the Internet. The message at the receiving side is transformed back to the original data.
[image: ]
Figure 5.17: MIME
MIME defines five headers that can be added to the original e-mail header section to define the transformation parameters:
1. MIME-Version
2. Content-Type
3. Content-Transfer-Encoding
4. Content-Id
5. Content-Description
Figure 5.18 shows the MIME headers.
[image: ]
Figure 5.18: MIME headers.
MIME-Version This header defines the version of MIME used. The current version is 1.1.
[image: ]
Content-Type this header defines the type of data used in the body of the message. The content type and the content subtype are separated by a slash. Depending on the subtype, the header may contain other parameters.
[image: ]
	MIME allows seven different types of data. These are listed in Table 5.7.	
Table 5.7: Data types and subtypes in MIME
[image: ]
Content-Transfer-Encoding this header defines the method used to encode the messages into 0’s and 1’s for transport:
[image: ]


Table 5.8: Content-transfer-encoding
[image: ]
Content-Id This header uniquely identifies the whole message in a multiple-message environment.
[image: ]
Content-Description This header defines whether the body is image, audio, or video.
Content-Description: <description>
c. Message Transfer Agent: SMTP
The actual mail transfer is done through message transfer agents. To send mail, a system must have the client MTA, and to receive mail, a system must have a server MTA. The formal protocol that defines the MTA client and server in the Internet is called the Simple Mail Transfer Protocol (SMTP). As we said before, two pairs of MTA client/server programs are used in the most common situation (fourth scenario). Figure 5.19 shows the range of the SMTP protocol in this scenario.
[image: ]
Figure 5.19: SMTP range
SMTP is used two times, between the sender and the sender's mail server and between the two mail servers.
SMTP simply defines how commands and responses must be sent back and forth. Each network is free to choose a software package for implementation. 
Commands and Responses
 SMTP uses commands and responses to transfer messages between an MTA client and an MTA server (see Figure 5.20).
[image: ]
Figure 5.20: Commands and responses
Commands are sent from the client to the server. The format of a command is shown in Figure 5.21. It consists of a keyword followed by zero or more arguments. SMTP defines 14 commands. The first five are mandatory; every implementation must support these five commands. The next three are often used and highly recommended. The last six are seldom used.
[image: ]
Figure 5.21:  Command format
The commands are listed in Table 5.9.
Table 5.9 Commands
[image: ]
Responses are sent from the server to the client. A response is a three digit code that may be followed by additional textual information. Table 5.10 lists some of the responses.
Table 5.10: Responses
[image: ]
[image: ]
	

[image: ]
Mail Transfer Phases The process of transferring a mail message occurs in three phases: connection establishment, mail transfer, and connection termination.
d. Message Access Agent: POP and IMAP: The first and second stages of mail delivery use SMTP. However, SMTP is not involved in the third stage because SMTP is a push protocol; it pushes the message from the client to the server.
On the other hand, the third stage needs a pull protocol; the client must pull messages from the server. The direction of the bulk data is from the server to the client. The third stage uses a message access agent. 
Currently two message access protocols are available: Post Office Protocol, version 3 (POP3) and Internet Mail Access Protocol, version 4 (IMAP4). 
[image: ]

Figure 5.22:  POP3 and IMAP4
i. POP3: 
Post Office Protocol, version 3 (POP3) is simple but limited in functionality. The client POP3 software is installed on the recipient computer; the server POP3 software is installed on the mail server. 
Mail access starts with the client when the user needs to download its e-mail from the mailbox on the mail server. The client opens a connection to the server on TCP port 110. It then sends its user name and password to access the mailbox. The user can then list and retrieve the mail messages, one by one. 
POP3 has two modes: the delete mode and the keep mode. In the delete mode, the mail is deleted from the mailbox after each retrieval. In the keep mode, the mail remains in the mailbox after retrieval. 
ii. IMAP4: 
Another mail access protocol is Internet Mail Access Protocol, version 4 (IMAP4). IMAP4 is similar to POP3, but it has more features; IMAP4 is more powerful and more complex. 
POP3 is deficient in several ways. It does not allow the user to organize her mail on the server; the user cannot have different folders on the server. In addition, POP3 does not allow the user to partially check the contents of the mail before downloading. 
IMAP4 provides the following extra functions: 
· A user can check the e-mail header prior to downloading. 
· A user can search the contents of the e-mail for a specific string of characters prior to downloading. 
· A user can partially download e-mail. This is especially useful if bandwidth is limited and the e-mail contains multimedia with high bandwidth requirements. 
· A user can create, delete, or rename mailboxes on the mail server. 
· A user can create a hierarchy of mailboxes in a folder for e-mail storage. 

6. TELNET: 
A server program can provide a specific service to its corresponding client program. For example, the FTP server is designed to let the FTP client store or retrieve files on the server site. However, it is impossible to have a client/server pair for each type of service we need; the number of servers soon becomes intractable which is not scalable. 
Another solution is to have a specific client/server program for a set of common scenarios, but to have some generic client/server programs that allow a user on the client site to log into the computer at the server site and use the services available there. 
For example, if a student needs to use the Java compiler program at her university lab, there is no need for a Java compiler client and a Java compiler server. The student can use a client logging program to log into the university server and use the compiler program at the university. We refer to these generic client/server pairs as remote logging applications. 
One of the original remote logging protocols is TELNET, which is an abbreviation for TErminaL NETwork. Although TELNET requires a logging name and password, it is vulnerable to hacking because it sends all data including the password in plaintext (not encrypted). 
A hacker can eavesdrop and obtain the logging name and password. Because of this security issue, the use of TELNET has diminished in favor of another protocol, Secure Shell (SSH). 
Although TELNET is almost replaced by SSH, we briefly discuss TELNET here for two reasons: 
1. The simple plaintext architecture of TELNET allows us to explain the issues and challenges related to the concept of remote logging, which is also used in SSH when it serves as a remote logging protocol. 
2. Network administrators often use TELNET for diagnostic and debugging purposes. 
Local versus Remote Logging: 
When a user logs into a local system, it is called local logging. As a user types at a terminal or at a workstation running a terminal emulator, the keystrokes are accepted by the terminal driver. 
	The terminal driver passes the characters to the operating system. The operating system, in turn, interprets the combination of characters and invokes the desired application program or utility.
However, when a user wants to access an application program or utility located on a remote machine, she performs remote logging. Here the TELNET client and server programs come into use. The user sends the keystrokes to the terminal driver where the local operating system accepts the characters but does not interpret them. 
[image: ]
Figure 5.23:  Local and remote log-in
Network Virtual Terminal (NVT)
The characters are sent to the TELNET client, which transforms the characters into a universal character set called Network Virtual Terminal (NVT) characters and delivers them to the local TCP/IP stack. 
The commands or text, in NVT form, travel through the Internet and arrive at the TCP/IP stack at the remote machine. Here the characters are delivered to the operating system and passed to the TELNET server, which changes the characters to the corresponding characters understandable by the remote computer. 
However, the characters cannot be passed directly to the operating system because the remote operating system is not designed to receive characters from a TELNET server; it is designed to receive characters from a terminal driver. 

[image: ]
Figure 5.24:  Concept of NVT
The solution is to add a piece of software called a pseudo terminal driver, which pretends that the characters are coming from a terminal. The operating system then passes the characters to the appropriate application program. 
NVT uses two sets of characters, one for data and one for control. Both are 8-bit bytes. For data, NVT normally uses what is called NVT ASCII. This is an 8-bit character set in which the seven lowest order bits are the same as US ASCII and the highest order bit is 0. 
To send control characters between computers (from client to server or vice versa), NVT uses an 8-bit character set in which the highest order bit is set to 1. 
Options: TELNET lets the client and server negotiate options before or during the use of the service.
User Interface: 
The operating system (UNIX, for example) defines an interface with user-friendly commands. An example of such a set of commands can be found in Table beow:
Table 5.11: Commands
[image: ]





7. SECURE SHELL (SSH): 
Although Secure Shell (SSH) is a secure application program that can be used today for several purposes such as remote logging and file transfer, it was originally designed to replace TELNET. 
There are two versions of SSH: SSH-1 and SSH-2, which are totally incompatible. The first version, SSH-1, is now deprecated because of security flaws in it. In this section, we discuss only SSH-2. 
Components: SSH is an application-layer protocol with three components. 
a. SSH Transport-Layer Protocol (SSH-TRANS): 
Since TCP is not a secured transport-layer protocol, SSH first uses a protocol that creates a secured channel on top of the TCP. This new layer is an independent protocol referred to as SSH-TRANS. 
When the procedure implementing this protocol is called, the client and server first use the TCP protocol to establish an insecure connection. Then they exchange several security parameters to establish a secure channel on top of the TCP. The services provided by this protocol are: 
1. Privacy or confidentiality of the message exchanged. 
2. Data integrity, which means that it is guaranteed that the messages exchanged between the client and server are not changed by an intruder. 
3. Server authentication, which means that the client is now sure that the server is the one that it claims to be. 
4. Compression of the messages, which improves the efficiency of the system and makes attack more difficult. 
b. SSH Authentication Protocol (SSH-AUTH): 
After a secure channel is established between the client and the server and the server is authenticated for the client, SSH can call another procedure that can authenticate the client for the server. The client authentication process in SSH is very similar to what is done in Secure Socket Layer (SSL). 
This layer defines a number of authentication tools similar to the ones used in SSL. Authentication starts with the client, which sends a request message to the server. The request includes the user name, server name, the method of authentication, and the required data. The server responds with either a success message, which confirms that the client is authenticated, or a failed message, which means that the process needs to be repeated with a new request message.
c. SSH Connection Protocol (SSH-CONN): 
After the secured channel is established and both server and client are authenticated for each other, SSH can call a piece of software that implements the third protocol, SSHCONN. 
One of the services provided by the SSH-CONN protocol is multiplexing. SSH-CONN takes the secure channel established by the two previous protocols and lets the client create multiple logical channels over it. Each channel can be used for a different purpose, such as remote logging, file transfer, and so on. 


Applications: 
Although SSH is often thought of as a replacement for TELNET, SSH is, in fact, a general-purpose protocol that provides a secure connection between a client and server. 
a. SSH for Remote Logging: 
Several free and commercial applications use SSH for remote logging. Among them, we can mention PuTTy, by Simon Tatham, which is a client SSH program that can be used for remote logging. Another application program is Tectia, which can be used on several platforms. 
b. SSH for File Transfer: 
One of the application programs that is built on top of SSH for file transfer is the Secure File Transfer Program (sftp). The sftp application program uses one of the channels provided by the SSH to transfer files. Another common application is called Secure Copy (scp). This application uses the same format as the UNIX copy command, cp, to copy files.
8. DOMAIN NAME SYSTEM (DNS): 
Since the Internet is so huge today, a central directory system cannot hold all the mapping. In addition, if the central computer fails, the whole communication network will collapse. 
A better solution is to distribute the information among many computers in the world. In this method, the host that needs mapping can contact the closest computer holding the needed information. This method is used by the Domain Name System (DNS). 
Figure 5.25 shows how TCP/IP uses a DNS client and a DNS server to map a name to an address. A user wants to use a file transfer client to access the corresponding file transfer server running on a remote host. The user knows only the file transfer server name, such as afilesource.com.
[image: ]
Figure 5.25: Purpose of DNS
a. Name Space: 
A name space that maps each address to a unique name can be organized in two ways: flat or hierarchical. In a flat name space, a name is assigned to an address. 
A name in this space is a sequence of characters without structure. The names may or may not have a common section; if they do, it has no meaning. The main disadvantage of a flat name space is that it cannot be used in a large system such as the Internet because it must be centrally controlled to avoid ambiguity and duplication. 
In a hierarchical name space, each name is made of several parts. The first part can define the nature of the organization, the second part can define the name of an organization, the third part can define departments in the organization, and so on. In this case, the authority to assign and control the name spaces can be decentralized. 
A central authority can assign the part of the name that defines the nature of the organization and the name of the organization. The responsibility for the rest of the name can be given to the organization itself. 
The organization can add suffixes (or prefixes) to the name to define its host or resources. The management of the organization need not worry that the prefix chosen for a host is taken by another organization because, even if part of an address is the same, the whole address is different.
b. Domain Name Space: 
To have a hierarchical name space, a domain name space was designed. In this design the names are defined in an inverted-tree structure with the root at the top. The tree can have only 128 levels: level 0 (root) to level 127 (see Figure 5.26).
[image: ]
Figure 5.26: Domain name space
Label: 
Each node in the tree has a label, which is a string with a maximum of 63 characters. The root label is a null string (empty string). DNS requires that children of a node (nodes that branch from the same node) have different labels, which guarantees the uniqueness of the domain names. 
Domain Name: 
Each node in the tree has a domain name. A full domain name is a sequence of labels separated by dots (.). The domain names are always read from the node up to the root. The last label is the label of the root (null). This means that a full domain name always ends in a null label, which means the last character is a dot because the null string is nothing. Figure 5.27 shows some domain names. 

[image: ]
Figure 5.27: Domain names and labels
Domain: 
A domain is a subtree of the domain name space. The name of the domain is the name of the node at the top of the subtree. Figure 5.28 shows some domains. Note that a domain may itself be divided into domains.
[image: ]
Figure 5.28: Domains
c. Distribution of Name Space: 
The information contained in the domain name space must be stored. However, it is very inefficient and also unreliable to have just one computer store such a huge amount of information. It is inefficient because responding to requests from all over the world places a heavy load on the system. It is not unreliable because any failure makes the data inaccessible.
Hierarchy of Name Servers
The solution to these problems is to distribute the information among many computers called DNS servers. DNS allows domains to be divided further into smaller domains (sub domains). Each server can be responsible (authoritative) for either a large or a small domain. In other words, we have a hierarchy of servers in the same way that we have a hierarchy of names (see Figure 5.29).
[image: ]
Figure 5.29:  Hierarchy of name servers
Root Server
A root server is a server whose zone consists of the whole tree. A root server usually does not store any information about domains but delegates its authority to other servers, keeping references to those servers. There are several root servers, each covering the whole domain name space. The servers are distributed all around the world. 
A primary server loads all information from the disk file; the secondary server loads all information from the primary server. When the secondary downloads information from the primary, it is called zone transfer.
d. DNS in the Internet: 
DNS is a protocol that can be used in different platforms. In the Internet, the domain name space (tree) is divided into three different sections: generic domains, country domains, and the inverse domain (see Figure 5.30).
[image: ]
Figure 5.30:  DNS used in the Internet
Generic Domains
The generic domains define registered hosts according to their generic behavior. Each node in the tree defines a domain, which is an index to the domain name space database.

[image: http://www.eenadupratibha.net/pratibha/engineering/images/content_pics/content_three_Dom_Name_Sys_im4.JPG]
Figure 5.31:  Generic domains
Table 5.12:  Generic domain labels
[image: http://www.eenadupratibha.net/pratibha/engineering/images/content_pics/content_three_Dom_Name_Sys_im5.JPG]
Country Domains
The country domains section uses two-character country abbreviations (e.g., us for United States). Second labels can be organizational, or they can be more specific, national designations.
[image: ]
Figure 5.32:  Country domains
Inverse Domain
Inverse domain is used to map an address to a name. For example, a client send a request to the server for performing a particular task, server finds a list of authorized client.  The list contains only IP addresses of the client. The server sends a query to the DNS server to map an address to a name to determine if the client is on the authorized list. This query is called an inverse query. This query is handled by first level node called arpa.
[image: ]
Figure 5.33:  Inverse domains
e. Resolution:
Mapping a name to an address or an address to a name is called name-address resolution.
Resolver
DNS is designed as a client/server application. A host that needs to map an address to a name or a name to an address calls a DNS client called a resolver. The resolver accesses the closest DNS server with a mapping request. If the server has the information, it satisfies the resolver; otherwise, it either refers the resolver to other servers or asks other servers to provide the information. 
After the resolver receives the mapping, it interprets the response to see if it is a real resolution or an error, and finally delivers the result to the process that requested it.
Mapping Names to Addresses
Most of the time, the resolver gives a domain name to the server and asks for the corresponding address. In this case, the server checks the generic domains or the country domains to find the mapping.
Mapping Addresses to Names
A client can send an IP address to a server to be mapped to a domain name. As mentioned before, this is called a PTR query or inverse query. Server uses inverse domain.
If the resolver receives the IF address 132.34.45.121, the resolver first inverts the address and then adds the two labels before sending. The domain name sent is "121.45.34.132.in-addr.arpa." which is received by the local DNS and resolved.

Recursive Resolution
The client (resolver) can ask for a recursive answer from a name server. This means that the resolver expects the server to supply the final answer. If the server is the authority for the domain name, it checks its database and responds. If the server is not the authority, it sends the request to another server (the parent usually) and waits for the response. If the parent is the authority, it responds; otherwise, it sends the query to yet another server. When the query is finally resolved, the response travels back until it finally reaches the requesting client. This is called recursive resolution and is shown in Figure 5.34
[image: ]
Figure 5.34:  Recursive resolution
Iterative Resolution
If the client does not ask for a recursive answer, the mapping can be done iteratively. If the server is an authority for the name, it sends the answer. If it is not, it returns (to the client) the IP address of the server that it thinks can resolve the query. The client is responsible for repeating the query to this second server. If the newly addressed server can resolve the problem, it answers the query with the IP address; otherwise, it returns the IP address of a new server to the client. Now the client must repeat the query to the third server. This process is called iterative resolution because the client repeats the same query to multiple servers. In Figure 5.35 the client queries four servers before it gets an answer from the mcgraw.com server.
[image: ]
Figure 5.35:  Iterative resolution



f. DNS Messages:
	DNS has two types of messages: query and response. Both types have the same format. The query message consists of a header and question records; the response message consists of a header, question records, answer records, authoritative records, and additional records.
[image: ]
Figure 5.36:  Query and response messages

Header
Both query and response messages have the same header format with some fields set to zero for the query messages. The header is 12 bytes, and its format is shown in Figure 5.37.
[image: ]
Figure 5.37:  Header format
The identification subfield is used by the client to match the response with the query. The client uses a different identification number each time it sends a query. The server duplicates this number in the corresponding response.
The flags subfield is a collection of subfields that define the type of the message, the type of answer requested, the type of desired resolution (recursive or iterative), and so on.
The number of question records subfield contains the number of queries in the question section of the message.
The number of answer records subfield contains the number of answer records in the answer section of the response message. Its value is zero in the query message. 
The number of authoritative records subfield contains the number of authoritative records in the authoritative section of a response message. Its value is zero in the query message. 
Finally, the number of additional records subfield contains the number additional records in the additional section of a response message. Its value is zero in the query message.
g. Types of Records:
Two types of records are used in DNS. The question records are used in the question section of the query and response messages. The resource records are used in the answer, authoritative and additional information sections of the response message.
Question Record A question record is used by the client to get information from a server. This contains the domain name.
Resource Record Each domain name (each node on the tree) is associated with a record called the resource record. The server database consists of resource records. Resource records are also what is returned by the server to the client.
h. Registrars:
How are new domains added to DNS? This is done through a registrar, a commercial entity accredited by ICANN. A registrar first verifies that the requested domain name is unique and then enters it into the DNS database. A fee is charged.
Today, there are many registrars; their names and addresses can be found at
http://www.intenic.net
To register, the organization needs to give the name of its server and the IP address of the server.
For example, a new commercial organization named wonderful with a server named ws and IP address 200.200.200.5 needs to give the following information to one of the registrars:
Domain name: WS.wonderful.com
IP address: 200.200.200.5
i. Dynamic Domain Name System (DDNS):
The DNS master fie should be updated dynamically. The Dynamic Domain Name System (DDNS) therefore was devised to respond to this need. In DDNS, when a binding between a name and an address is determined, the information is sent, usually by DHCP (Dynamic Host Configuration Protocol) to a primary DNS server. The primary server updates the zone. The secondary servers are notified either actively or passively.
j. Encapsulation:
DNS can use either UDP or TCP. In both cases the well-known port used by the server is port 53. UDP is used when the size of the response message is less than 512 bytes because most UDP packages have a 512-byte packet size limit. If the size of the response message is more than 512 bytes, a TCP connection is used.





9. SNMP (Simple Network Management Protocol): 
Several network management standards have been devised during the last few decades. The most important one is Simple Network Management Protocol (SNMP), used by the Internet. 
SNMP is a framework for managing devices in an internet using the TCP/IP protocol suite. It provides a set of fundamental operations for monitoring and maintaining an internet. SNMP uses the concept of manager and agent. That is, a manager, usually a host, controls and monitors a set of agents, usually routers or servers (see Figure 5.38).
[image: ]
Figure 5.38: SNMP concept
SNMP is an application-level protocol in which a few manager stations control a set of agents. The protocol is designed at the application level so that it can monitor devices made by different manufacturers and installed on different physical networks. 
In other words, SNMP frees management tasks from both the physical characteristics of the managed devices and the underlying networking technology. It can be used in a heterogeneous internet made of different LANs and WANs connected by routers made by different manufacturers. 
Managers and Agents:
 	A management station, called a manager, is a host that runs the SNMP client program. A managed station, called an agent, is a router (or a host) that runs the SNMP server program.
Management is achieved through simple interaction between a manager and an agent. The agent keeps performance information in a database. The manager has access to the values in the database. 
For example, a router can store in appropriate variables the number of packets received and forwarded. The manager can fetch and compare the values of these two variables to see if the router is congested or not. 
The manager can also make the router perform certain actions. For example, a router periodically checks the value of a reboot counter to see when it should reboot itself. It reboots itself, for example, if the value of the counter is 0. The manager can use this feature to reboot the agent remotely at any time. It simply sends a packet to force a 0 value in the counter. 
Agents can also contribute to the management process. The server program running on the agent can check the environment and, if it notices something unusual, it can send a warning message (called a Trap) to the manager. 
In other words, management with SNMP is based on three basic ideas: 
1. A manager checks an agent by requesting information that reflects the behavior of the agent. 
2. A manager forces an agent to perform a task by resetting values in the agent database. 
3. An agent contributes to the management process by warning the manager of an unusual situation. 
Management Components: 
To do management tasks, SNMP uses two other protocols: Structure of Management Information (SMI) and Management Information Base (MIB). 
Role of SNMP: SNMP has some very specific roles in network management. It defines the format of the packet to be sent from a manager to an agent and vice versa. It also interprets the result and creates statistics (often with the help of other management software). It reads and changes the status (values) of objects (variables) in SNMP packets.
Role of SMI: To use SNMP, we need rules for naming objects. This is particularly important because the objects in SNMP form a hierarchical structure. Part of a name can be inherited from the parent. We also need rules to define the types of objects. 
	Role of MIB: MIB creates a set of objects defined for each entity in a manner similar to that of a database (mostly metadata in a database, names & types without values).
image4.png
PASSIVE
ESTABLISHMENT
PENDING.

PASSIVE
DISCONNECT|
PENDING

IDLE

ESTABLISHED)|

IDLE

Connect primitive
executed

ACTIVE
ESTABLISHMENT|
PENDING.

Connection accepted
segment recaived

ACTIVE
DISCONNECT
PENDING

'Disconnection request
segment received




image5.png
Primitive Meaning

SOCKET _| Greate a new communication endpoint

BIND ‘Assocate a local address with a socket

LISTEN | Announce willingness to accept connections; give queue size
ACCEPT _| Passively establish an incoming connection

CONNECT | Actively attempt to establish a connection

SEND ‘Send some data over the connection

RECEIVE | Recelve some data from the connection

CLOSE Release the connection





image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.jpeg
(a)

(b)

Unused
space

} TPDU 1

<

r TPDU 2

Y TPDU 3

> TPDU 4





image12.emf

image13.png
epucons) e

iy
ya

[ —p—

Ofred oxd (packeiisce)
@




image14.png




image15.png
Bandwidth allocaticn

05

™ Flow 1

P rewzsate

1





image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.png
o )
pr—
P——
= L

A
oo




image22.png
T





image23.png
State Doscription
CLoseD "No connecton’s active or ponding

USTEN “The server is waitng fo an incoming cal
SYNACVD | A comecton request has arved; wai or ACK
'SYN SENT__| Tho appication has sarted 0 open a connaction
ESTABLISHED | The normal cata ransfr sate

FINWAIT | Tho appication has saidt s inishod
FINWAIT2 | The other ide has agreed to rolease

TIME WATT | Waitforal paokes to dis off

CLoSING ‘Both sidas have ied o closa smltaneously
"CLOSE WAIT_| Tha othar side has iiiated a eleasa

LAST ACK___| Wait fo all packats to o off





image24.jpeg
(Start)

CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED
; CLOSE/- N
1
LISTEN/- !} CLOSE/-
SYN/SYN + ACK !
(Step 2 ./?)f the 3-way handshake) LISTEN
1
! RST/- /‘ K SEND/SYN
SYN SYN
RC\{D SYN/SYN + ACK (simultaneous open) SENT
!
i (Data transfer state)
\ ACK/— SYN + ACK/ACK _/
------------------ = ESTABLISHED (Step 3 of the 3-way handshake)
CLOSE/FIN i
1
CLOSE/FIN ‘\ FIN/ACK
( (Active close) (Passiv;\g close)
T T ] cTTTTTTTTTT . ]
i FIN/ACK i | CLC‘)SE i
FIN !
i WAIT 1 ERSIHG ! i WAIT i
| 1 | T 1
| I | 1 |
. ACK- ACK/~ | | ! CLOSE/FIN!
| | ! |
: FIN + ACK/ACK : i ! l
i FIN TIME i ! LAACSKT i
|
| WAIT 2 FIN/ACK WAIT i ! . |
! | i 1 i
e J ___________: __________ J
(Timeout/) !
1
ACK/- J
CLOSED |w==—mmm oo -

(Go back to start)




image25.jpeg
Sender Receiver

Application
doesa2K ——»
write

Application
does a 2K .
write

Sender is
blocked

Sender may
send up to 2K —»

ACK = 2048 WIN = 2048

2K ] SEQ = z04g]

Receiver's

o

ll\)
I x I

buffer

IS
P

Empty

Full

Application
reads 2K

N
!

E

-

£l
P




image26.jpeg
Receiver's buffer is full

|

Application reads 1 byte

| |<— Room for one more byte

Window update segment sent
[Feager | |
/

New byte arrives

l

LEie Receiver's buffer is full

Ny





image27.emf

image28.emf

image29.emf

image30.png
Request e

SErver

Static HTML document





image31.png
1 Boldug | E Endbold

<B> This is the text to be boldfaced.<!B> :




image32.png
Browser |





image33.png
Client

Request

Dynamic HTML document

Program




image34.png
Server

Request

Run the applet
to get the result

Result




image35.png
Run the JavaScript (JS)
to get the result

Client

Server

Request .

Result





image36.gif
Client

Server

Request

Response





image37.png
ety oy
oy ety
 ——— ——





image38.png
Space
Request type I *
a. Request line
Space

HTTP version I *

b. Status line

Space

* HTTP version

Space

¢ | Status phrase





image39.png
Method

Action

GET Requests a document from the server

HEAD Requests information about a document but not the document itself
POST Sends some information from the client to the server

PUT Sends a document from the server to the client

TRACE Echoes the incoming request

CONNECT Reserved

OPTION Inquires about available options





image40.png
Code Phrase Description
Informational
100 | Continue The initial part of the request has been received. and the
client may continue with its request.
101 Switching The server is complying with a client request to switch
protocols defined in the upgrade header.
Success
200 | OK The request is successful.
201 | Created A new URL is created.
202 Accepted The request is accepted. but it is not immediately acted upon.
204 | No content There is no content in the body.





image41.png
Code Phrase Description

Redirection

301 | Moved permanently | The requested URL is no longer used by the server.

302 | Moved temporarily | The requested URL has moved temporarily.

304 | Not modified The document has not been modified.
Client Error

400 | Bad request There is a syntax error in the request.

401 | Unauthorized The request lacks proper authorization.

403 | Forbidden Service is denied.

404 | Not found The document is not found.

405 | Method not allowed | The method is not supported in this URL.

406 | Not acceptable The format requested is not acceptable.
Server Error

500 | Internal server error | There is an error. such as a crash. at the server site.

501 | Notimplemented | The action requested cannot be performed.

503 | Service unavailable | The service is temporarily unavailable, but may be requested
in the foture.





image42.png
space
[ -





image43.png
Header

Description

Cache-control

Specifies infonnation about caching

Connection Shows whether the connection should be closed or not
Date Shows the current date
MIME-version | Shows the MIME version used

Upgrade

Specifies the preferred communication protocol





image44.png
Header Description
Accept Shows the medium fonnat the client can accept
Accept-charset Shows the character set the client can handle

Accept-encoding

Shows the encoding scheme the client can handle

Accept-language

Shows the language the client can accept

Authorization Shows what pennissions the client has
From Shows the e-mail address of the user
Host Shows the host and port number of the server

If-modified-since

Sends the document ifnewer than specified date

If-match

Sends the document only ifit matches given tag

If-non-match

Sends the document only ifit does not match given tag

If-range

Sends only the portion of the document that is missing

If-unmodified-since

Sends the document ifnot changed since specified date

Referrer

Specifies the URL of the linked document

User-agent

Identifies the client program





image45.png
Header Description
Accept-range | Shows if server accepts the range requested by client
Age Shows the age of the document
Public Shows the supported list of methods
Retry-after | Specifies the date after which the server is available

Server

Shows the server name and version number





image46.png
Header

Description

Allow

Lists valid methods that can be used with a URL

Content-encoding

Specifies the encoding scheme

Content-language

Specifies the language

Content-length

Shows the length ofthe document

Content-range

Specifies the range of the document

Content-type Specifies the medium type
Etag Gives an entity tag.
Expires Gives the date and fime when contents may change

Last-modified

Gives the date and time of the last change

Location

Specifies the location of the created or moved document





image47.emf

image48.png
Gt

tE

it





image49.png
File type, data structure
2nd transmission mode
are defined by the clieat

Data
connection

Datatransfer |

Local data type
‘and structure




image50.png
User agent User agent

Mail server




image51.png
UA: user agent
MTA: message transfer agent

Mail server Mail server





image52.png
UA: user agent
MTA: message transfer agent

Mail server Mail server




image53.png
UA: user agent
MTA: message transfer agent
MAA: message access agent

Mail server Mail server




image54.png
User agent

Composiag
messages

Reading
‘messages

Replying to
‘messages

Forwarding
‘messages

Handling
‘maitboxes





image55.png
ddees ofthe The domain
maitoon on the name ofthe
i server

mail server




image56.png
7-bit NVT ASCIT

‘Non-ASCII code

7-bitNVT Ascrl]

MTA

MTA





image57.png
MIME-Version: 1.1

Content-Type: fype/subtype

Content- Transfer-Encoding: encoding type
ContentId: message id.

Content-Description: textual explanation of nontextual contents

MIME headers





image58.emf

image59.png
Content-Type: <type Jsubtype; parameters>




image60.png
Tipe Subiype Description
Text Plain Unformatted
HIML HTML format (see Chapter 27)
Mixed Body contains ordered parts of different data types
Multipart | Parallel Same as above, but no order
Digest Similar to mixed subtypes. but the default is message/
RFC822
Alternative Parts are different versions of the same message
RFC822 Body is an encapsulated message
Message | Partial Body is a fragment ofa bigger message
External-Body | Body is a reference to another message
Image IPEG Image is in IPEG format
GIF Image is in GIF format
Video MPEG Video is in MPEG format
Audio Basic Single-channel encoding of voice at 8 kHz
Application | PostScript Adobe PostScript
Octet-stream | General binary data (8-bit bytes)





image61.png
‘Content-Transfer-Encoding: <type>




image62.png
Tpe

Description

Thit NVT ASCI characters and short lines
it ‘Non-ASCII characters and short lines

Binary ‘Non-ASCI characters with unlimited-length ines
Base-64 6-bit locks of data encoded into 8-bit ASCII characters
‘Quoted-printable | Non-ASCII characters encoded a5 am equals sign followed

by an ASCII code





image63.png
Content-Id: id=<content-id>




image1.emf

image64.png




image65.png
o

Responses




image66.png
Keyword. rguments)





image67.png
Taerd rgments)
Lo Sender hot name
MATL FROM | Senderofthe message
RCPTTO | Totended recipiont ofthe mersage
DATA Body ofthe mal
QuiT
RSET
VRFY “Name ofecipient o be verified
Nooe
TORN
B Miling lstto be expanded
HELP [——
SEND FROM | Tatended ecipent of e message
SMOLFROM | Tatended recipient of e message
SMALFROM | Tntended ecipien of the message





image68.png
Code Deseription

Fositive Completion Reply

2T | System st orbelp reply

214 | Hep message

20 | Serviceready

DI | Service closng tranemisson chaznel

250 | Request command completed

51| Usernot local the message will be forwarded

Fositive Intermediate Reply

354 | Stanmail mput





image69.png
Transient Negative Completion Reply

o1

Service ot svalsble

0

Milbor ot alsble

)

Commmasd shorted: lowal eor

5]

Command shortad imnifcient orsge.





image70.png
Permanent Negative Completion Reply

00 [ Systax enor, srecogaized command
SO1 | Syatax eror in parameters or srguments
02 | Command not implemented.

503 | Bad sequence of commands

504 | Command temporanly not implemented
550

551

)

55

551





image71.png




image72.png
pEr=my

e
i
7
=
=
i3
3
Tezsal Terminal | [ Data ik
01 | e | i
a

TRemowtorm




image73.png
toctcorpr | WTawses | Kenomconp e
e

L1 CLLLLLT





image2.png
Primitive Packet sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information

RECEIVE (none) Block until a DATA packet arrives
DISCONNECT | DISCONNECTION REQ. | Request a release of the connection





image74.png
Command Name.

Tieaning

open Connect t5 3 ramots compuEer

oz Cloze te connecon:

Sioiay Show the operating parsmeters

o Change to ine or charscrr mode
3 Eok TEINET

ond Send specal harsces





image75.emf

image76.emf

image77.emf

image78.emf

image79.png




image80.png




image81.jpeg




image82.jpeg
Label

Description

aero Airlines and acrospace companies
biz Businesses or firms (similar to “com™)
com Commercial organizations,

coop Cooperative business organizations
edu Educational institutions

gov Government institutions

info Information service providers

int International organizations

mil Military groups

museum | Museums and other nonprofit organ
name Personal names (individuals)

net Network support centers

org Nonprofit organizations

pro Professional individual organizations





image83.png
Root level

Tndex o address.





image3.png
Frame.
header

Packet
header

Segment
header

‘Segment payload

Packet payload

Frame payload





image84.png
Root level

Index to names

Inverse domain





image85.png
Root server

= _

e - fhda. edu mcgraw.com

Client




image86.png
Root server

= megraw.com





image87.png
Header Header
= Question section = Question section
= Answer section
= Authoritative section
= Additional section
a. Query b. Response





image88.png
Identification

Flags

Number of question records

Number of answer records
(all Os in query message)

Number of authoritative records
(all Os in query message)

Number of additional records
(all Os in query message)





image89.emf

