G.Pullaiah College of Engineering and Technology (Autonomous)

(Approved by AICTE | NAAC Accreditation with 'A' Grade | Accredited by NBA (CSE, ECE & EEE) | Permanently Affiliated to JNTUA)

Nandikotkur Road, Venkayapalli (V), Kurnool - 518452, Andhra Pradesh

BACHELOR OF TECHNOLOGY

ACADEMIC REGULATIONS

GPCET - R18

B.Tech Regular Four Year Degree Programme (for the batches admitted from the academic year 2018- 2019)

0

B.Tech (Lateral Entry Scheme) (for the batches admitted from the academic year 2019 - 2020)

Preliminary Definitions and Nomenclature

AICTE: Means All India Council for Technical Education, New Delhi.

Autonomous Institute: Means an institute designated as Autonomous by University Grants Commission (UGC), New Delhi in concurrence with affiliating University (Jawaharlal Nehru Technological University, Ananthapur).

Academic Autonomy: Means freedom to an institute in all aspects of conducting its academic programs, granted by UGC for Promoting Excellence.

Academic Council: The Academic Council is the highest academic body of the institute and isresponsible for the maintenance of standards of instruction, education and examination within the institute. Academic Council is an authority as per UGC regulations and it has the right to take decisions on all academic matters including academic research.

Academic Year:It is the period necessary to complete an actual course of study within a year. Itcomprises two main semesters i.e., (one odd and one even).

Branch:Means specialization in a program like B.Tech degree program in Civil Engineering,B.Tech degree program in Computer Science and Engineering etc.

Board of Studies (BOS):BOS is an authority as defined in UGC regulations, constituted by Head of theOrganization for each of the departments separately. They are responsible for curriculum design and updation in respect of all the programs offered by a department.

Backlog Course: A course is considered to be a backlog course, if the student has obtained a failuregrade in that course.

Basic Sciences:The courses offered in the areas of Mathematics, Physics, Chemistry etc., are considered to be foundational in nature.

Betterment:Betterment is a way that contributes towards improvement of the students' grade in anycourse(s). It can be done by either (a) re-appearing or (b) re-registering for the course.

Commission: Means University Grants Commission (UGC), New Delhi.

Choice Based Credit System:The credit based semester system is one which provides flexibility indesigning curriculum and assigning credits based on the course content and hours of teaching along with provision of choice for the student in the course selection.

Certificate Course:It is a course that makes a student to have hands-on expertise and skills required forholistic development in a specific area/field.

Compulsory course: Course required to be undertaken for the award of the degree as per the program.

Internal Examination: It is an examination conducted towards sessional assessment.

Core:The courses that are essential constituents of each engineering discipline are categorized asprofessional core courses for that discipline.

Course: A course is a subject offered by a department for learning in a particular semester.

Course Outcomes: The essential skills that need to be acquired by every student through a course.

Credit:A credit is a unit that gives weight to the value, level or time requirements of an academic course. The number of 'Contact Hours' in a week of a particular course determines its credit value. One credit is equivalent to one lecture/tutorial hour per week.

Credit point:It is the product of grade point and number of credits for a course.

Cumulative Grade Point Average (CGPA):It is a measure of cumulative performance of a student overall the completed semesters. The CGPA is the ratio of total credit points secured by a student in various courses in all semesters and the sum of the total credits of all courses in all the semesters. It is expressed up to two decimal places.

Curriculum:Curriculum incorporates the planned interaction of students with instructional content,materials, resources, and processes for evaluating the attainment of Program Educational Objectives.

Department:An academic entity that conducts relevant curricular and co-curricular activities, involving both teaching and non-teaching staff, and other resources in the process of study for a degree.

Detention in a Course:Student who does not obtain minimum prescribed attendance in a course shall bedetained in that particular course.

Elective Course: A course that can be chosen from a set of courses. An elective can be ProfessionalElective and/or Open Elective.

Evaluation: Evaluation is the process of judging the academic performance of the student in her/hiscourses. It is done through a combination of continuous internal examinations and semester end examinations.

Grade: It is an index of the performance of the students in a said course. Grades are indicated by alphabets.

Grade Point: It is a numerical weight allotted to each letter grade on a 10 - point scale.

Institute:Means G.Pullaiah College of Engineering and Technology, Kurnool unless indicated otherwise by thecontext.

Massive Open Online Courses (MOOC): MOOC courses inculcate the habit of self learning. MOOCcourses would be additional choices in all the elective group courses.

Minor: Minor are coherent sequences of courses which may be taken in addition to the courses requiredfor the B.Tech degree.

Pre-requisite:A specific course or subject, the knowledge of which is required to complete beforestudent register another course at the next grade level.

Professional Elective:It indicates a course that is discipline centric. An appropriate choice of minimumnumber of such electives as specified in the program will lead to a degree with specialization.

Program: Means, UG degree program:Bachelor of Technology (B.Tech); PG degree program: Master of Technology (M.Tech) / Master of Business Administration (MBA).

Program Educational Objectives: The broad career, professional and personal goals that every studentwill achieve through a strategic and sequential action plan.

Project work:It is a design or research based work to be taken up by a student during his/her final yearto achieve a particular aim. It is a credit based course and is to be planned carefully by the student.

Registration: Process of enrolling into a set of courses in a semester of a program.

Regulations: The regulations, common to all B.Tech programs offered by Institute, are designated as "GPCET Regulations - R18" and are binding on all the stakeholders.

Semester:It is a period of study consisting of 16 to 18 weeks of academic work equivalent to normally90 working days. Odd semester commences usually in July and even semester in December of every year.

Semester End Examinations:It is an examination conducted for all courses offered in a semester at theend of the semester.

Student Outcomes:The essential skill sets that need to be acquired by every student during her/hisprogram of study. These skill sets are in the areas of employability, entrepreneurial, social and behavioral.

University: Means Jawaharlal Nehru Technological University Ananthapur (JNTUA), Ananthapuramu.

G.Pullaiah College of Engineering and Technology (Autonomous)

Academic Regulations

Regulations for Four Year Bachelor of Technology (B.Tech) Degree programme for the batches admitted from the academic year 2018-19

&

For B.Tech Lateral Entry batches admitted from the academic year 2019 - 2020

1. Award of B.Tech. Degree

A student will be declared eligible for the award of the B.Tech. degree if he/she fulfils the following academic regulations:

- i. Pursues a course of study for not less than four academic years and in not more than eight academic years. However, for the students availing Gap year facility this period shall be extended by two years at the most and these two years would not be counted in the maximum time permitted for graduation.
- ii. Registers for 176 credits and secures all 176 credits.
- 2. Students, who fail to fulfill all the academic requirements for the award of the degree within eight academic years from the year of their admission, shall forfeit their seat in B.Tech. course and their admission stands cancelled.

3. Courses of study

The following courses of study are offered at present as specializations for the B. Tech. course

S.No.	Name of the Branch	Branch Code
1.	Civil Engineering	01
2.	Electrical and Electronics Engineering	02
3.	Mechanical Engineering	03
4.	Electronics and Communication Engineering	04
5.	Computer Science and Engineering	05

4. Credits:

- i. *Credit:* A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (Lecture) or two hours of practical work/field work per week.
- ii. Academic Year: Two consecutive (one odd + one even) semesters constitute one academic year.
- iii. *Choice Based Credit System (CBCS):* The CBCS provides choice for students to select from the prescribed courses.
- iv. Each course is assigned certain number of credits based on following

	Semester	
	Periods / Week	Credits
Theory	03	03
Practical	04	02
Comprehensive Viva-Voce		02
Technical Seminar		02
Project Work	20/24	10/12

5. Distribution and Weightage of Marks

5.1 The performance of a student in each semester shall be evaluated subject wise with a maximum of 100 marks for theory and 100 marks for practical subject. In addition, Comprehensive Viva-Voce & Technical

Seminar will be evaluated for 50 marks each and Project work shall be evaluated for 200 marks whereas audit courses shall be evaluated for a maximum of 30 internal marks.

- i. For theory subjects the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End-Examination.
- ii. For practical subjects the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End-Examination.

5.2. Internal Examinations:

i. For theory subjects, during the semester, there shall be two midterm examinations. Each midterm examination consists of subjective paper for 30 marks with duration of 1hour 50 minutes which will be condensed to 20 marks. The remaining 10 marks will be awarded based on the submission of assignments by the students. A student has to submit two assignments in every subject each for 10 marks.

Subjective paper shall contain two parts —Part-A and Part-B. Part-A is compulsory and shall contain 12 questions each for 0.5 marks. Part-B shall contain 5 questions out of which the student needs to answer 3 questions each for 8 marks. The descriptive questions carrying 8 marks may contain either or questions also.

*Note 1: The marks obtained in the subjective paper shall be condensed to 20 marks, any fraction (0.5 & above) shall be rounded off to the next higher mark.

If the student is absent for the internal examination, no re-exam shall be conducted and internal marks for that examination shall be considered as zero.

First midterm examination shall be conducted for I, II units of syllabus and second midterm examination shall be conducted for III, IV and V units.

Final Internal marks shall be arrived at by considering the marks secured by the student in both the mid examinations with 80% weightage to the better mid exam and 20% to the other.

5.3. End Examinations:

End examination of theory subjects shall have the following pattern:

There shall be 6 questions and all questions are compulsory. Question I shall contain 10 compulsory short answer questions for a total of 20 marks such that each question carries 2 marks. There shall be 2 short answer questions from each unit. In each of the questions from 2 to 6, there shall be either/or type questions of 10 marks each. Student shall answer any one of them. Each of these questions from 2 to 6 shall cover one unit of the syllabus.

End examination of theory subjects consisting of two parts of different subjects, for eg: Electrical & Mechanical Technology, shall have the following pattern:

Question paper shall be in two parts viz., Part A and Part B with equal Weightage. In each part, there shall be 3 either-or type questions for 12, 12 and 11 marks.

Note: The answers for Part A and Part B shall be written in two separate answer books.

5.4. For practical subjects there shall be a continuous evaluation during the semester for 30 sessional marks and end examination shall be for 70 marks. Day-to-day work in the laboratory shall be evaluated for 30 marks by the concerned laboratory teacher based on the regularity/record/ viva. The end examination shall be conducted by the concerned laboratory teacher and senior expert in the same subject of the department.

In a practical subject consisting of two parts (Eg: Electrical & Mechanical Lab), the end examination shall be conducted for 35 marks in each part. Internal examination shall be evaluated as above for 30 marks in each part and final internal marks shall be arrived by considering the average of marks obtained in two parts.

- 5.5. There shall be an audit pass course in Social Values & Ethics and Advanced English Language Communication skills lab with no credits. There shall be no external examination. However, attendance in the audit course shall be considered while calculating aggregate attendance and student shall be declared pass in the audit course only when he/she secures 40% or more in the internal examinations. In case if student fails, re-exam shall be conducted for failed candidates every six months/semester at a convenient date of student satisfying the conditions mentioned in item 1 & 2 of the regulations.
- 5.6. For the subject having design and/or drawing, such as Engineering Drawing, the distribution shall be 30 marks for internal evaluation and 70 marks for end examination.

Day-to-day work shall be evaluated for 10 marks by the concerned subject teacher based on the reports/submissions prepared in the class. And there shall be two midterm examinations in a semester for duration of 2 hours each for 30 marks with consideration of average of the two MID examinations for the finalization of Internal marks. The subjective paper shall contain 5 questions of equal weightage of 10 marks and the marks obtained for 3 questions shall be condensed to 20 marks, any fraction (0.5 & above) shall be rounded off to the next higher mark. There shall be no objective paper in internal examination. The sum of day to day evaluation and the internal test marks will be the final sessional marks for the subject.

In the end examination pattern for Engineering Drawing there shall be 5 questions, either/or type, of 14 marks each. There shall be no objective type questions in the end examination. However, the end examination pattern for other subjects related to design/drawing is mentioned along with the syllabus.

- 5.7 There shall be two comprehensive online examinations, one at the end of II year and the other at the end of III year, with 100 objective questions for 100 marks on the subjects studied in the respective semesters. For each subject at least eight questions are to be framed. A student shall acquire 1 credit assigned to each of the comprehensive online examination when he/she secures 40% or more marks. In case, if a student fails in comprehensive online examination, he/she shall reappear/re-register by following a similar procedure adopted for the lab examinations.
- 5.7. There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) in III year I semester and in IV year II semester. Where in the student shall register the course (Minimum of 40 hours) offered by authorized institutions/Agencies, through online with the approval of Head of the Department. The Head of the Department shall appoint one mentor for each of the MOOC subjects offered and the mentor appointed shall conduct the internal examinations following the guidelines. Further, the College shall conduct the external examination for the MOOC subject in line with other regular subjects (5.3) based on the syllabi of the respective subject provided in the curriculum.
- 5.8. There shall be an Open Elective/Choice Based Credit Course (CBCC) in III year II semester, where in the students have to choose an elective offered by various departments including his/her own department.
- 5.9. **Minor in a discipline** (Minor degree/programme) concept is introduced in the curriculum for all conventional B. Tech programmes in which it offers a major. The main objective of Minor in a discipline is to provide additional learning opportunities for academically motivated students and it is an optional feature of the B. Tech. programme. In order to earn a Minor in a discipline a student has to earn 20 extra credits by studying four theory subjects and a minor discipline project.
 - a. Students who have a CGPA 8.5 (for SC/ST students CGPA 8.0) or above (up to II year-I semester) and without any backlog subjects will be permitted to register for Minor discipline programme. An SGPA

- and CGPA of 8.0 has to be maintained in the subsequent semesters without any backlog subjects in order to keep the Minor discipline registration active else Minor discipline registration will be cancelled.
- b. Students aspiring for a Minor must register from **third** year **first** semester onwards and must opt for a Minor in a discipline other than the discipline he/she is registered in. However, Minor discipline registrations are not allowed in the **Fourth** year.
- c. Students are not allowed to register and pursue more than two subjects in any semester. Students may register for minor discipline project from **third** year **first** semester onwards and may complete the same before **fourth** year **second** semester.
- d. Each department enlisted a set of subjects from its curriculum which are core for the discipline without any prerequisites. The Evaluation pattern of theory subjects and minor discipline project work will be similar to the regular programme evaluation. The minor discipline project shall be evaluated by the committee consisting of Head of the Department along with the two senior faculty members of the department.
- e. Students are not allowed to pursue minor discipline programme subjects under Self study and/or MOOCs manner.
- f. Student may enlist their choices of Minor discipline programmes in order of preference, to which they wish to join. It will not be permissible to alter the choices after the application has been submitted. However, students are allowed to opt for only one Minor discipline programme in the order of preference given by the student.
- g. Minimum strength for offering Minor in a discipline is considered as One-Fifth (i.e., 20% of the class) of the class size and Maximum size would be Four-Fifth of Class size (i.e., 80% of the class).
- h. Completion of a Minor discipline programme requires no addition of time to the regular Four year Bachelors' programme. That is, Minor discipline programme should be completed by the end of final year B. Tech. program along with the major discipline.
- i. The Concerned Head of the department will arrange separate course/class work and time table of the various Minor programmes. Attendance regulations for these Minor discipline programmes will be as per regular courses.
- j. A Student registered for Minor in a discipline and pass in all subjects that constitute the requirement for the Minor discipline programme. No class/division (i.e., second class, fist class and distinction etc.) shall be awarded for Minor discipline programme.
- k. This Minor in a discipline will be mentioned in the degree certificate as Bachelor of Technology in XXX with Minor in YYY. For example, Bachelor of Technology in Computer Science & Engineering with Minor in Electronics & Communication Engineering. The fact will also be reflected in the transcripts, along with the list of courses and a project taken for Minor programme with CGPA mentioned separately.
- 5.10. A mini project on **Water Resource Engineering** is introduced for 2 credits in the B. Tech Civil Engineering curriculum. It is introduced at the end of III Year II semester i.e., during summer vacation for at least 15 days period on topics of Water Resource Engineering. Topics can be found in the Civil Engineering curriculum. This shall be evaluated at the beginning of IV Year by a committee consisting of Head of Civil Engineering Department along with two senior faculty members of the department.
- 5.11. There shall be a **Technical Seminar** presentation in IV year II Semester. For the seminar, the student shall collect the information on a specialized topic and prepare a technical report, showing his/her understanding about the topic and submit to the department before presentation. The report and the presentation shall be evaluated by the departmental committee consisting of Head of the Department, seminar supervisor and a senior faculty member. The seminar shall be evaluated for 50 marks. A student shall acquire 2 credits assigned to the seminar when he/she secures 40% or more marks for the total of 50 marks. In case, if a student fails in seminar he/she shall reappear as and when IV/II supplementary examinations are conducted. The seminar shall be conducted anytime during the semester as per the convenience of the department committee and students. There shall be no external examination for seminar.
- 5.12. Out of a total of 200 marks for the **Project Work**, 60 marks shall be for Internal Evaluation and 140 marks for the End Semester Examination (Viva-voce). The Viva-Voce shall be conducted by a committee consisting of HOD, Project Supervisor and an External Examiner nominated by the

University. Project work shall start in IV-I and shall continue in the semester break. The evaluation of project work shall be conducted at the end of the IV year—II semester. The Internal Evaluation shall be made by the departmental committee (Head of the Department and two senior faculty members of the department), on the basis of two seminars given by each student on the topic of his/her project.

6. Attendance Requirements:

- ❖ A student shall be eligible to appear for University examinations if he/she acquires a minimum of 75% of attendance in aggregate of all the subjects in a semester.
- Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.
- ❖ Shortage of Attendance below 65% in aggregate shall in NO case be condoned.
- Students whose shortage of attendance is not condoned in any semester are not eligible to take their end examination of that class and their registration shall stand cancelled.
- ❖ A student will not be promoted to the next semester unless he satisfies the attendancerequirements of the present semester. They may seek readmission for that semester whenoffered next.

7. Minimum Academic Requirements:

The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no.6

- 7.1 A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory, practical, design, drawing subject or project if he secures not less than 35% of marks in the end examination and a minimum of 40% of marks in the sum total of the internal evaluation and end examination taken together. In case of audit courses and technical seminar & comprehensive viva voce he/she should secure 40% of the total marks.
- 7.2 A student shall be promoted from II to III year only if he/she fulfils the academic requirement of securing 40% of the credits (25 credits) in the subjects that have been studied up to II year I semester from the following examinations, irrespective of whether the candidate takes the end examination or not as per the normal course of study.

One regular and one supplementary examinations of I year (I & II Semesters).

One regular examination of II year I semester

7.3 A student shall be promoted from III year to IV year only if he/she fulfils the academic requirements of securing 40% of the credits (43 credits) in the subjects that have been studied up to III year I semester from the following examinations, irrespective of whether the candidate takes the end examination or not as per the normal course of study.

One regular and four supplementary examinations of I year I Semester.

One regular and three supplementary examinations of I year II Semester.

One regular and two supplementary examinations of II year I Semester.

One regular and one supplementary examinations of II year II Semester.

One regular examination of III year I Semester.

And in case if student is detained for want of credits for particular academic year by sections 7.2 and 7.3 above, the student may make up the credits through supplementary examinations and only after securing the required credits he/she shall be permitted to join in the III Year or IV Year as the case may be.

7.4 A student shall register and put up minimum attendance in all 176 credits and earn all the 176 credits. Marks obtained in all 176 credits shall be considered for the calculation of aggregate percentage of marks obtained. 7.5 Students who fail to earn 176 credits as indicated in the course structure within eight academic years from the year of their admission shall forfeit their seat in B.Tech. course and their admission shall stand cancelled.

8. Course Pattern:

- 8.1 The entire course of study is for four academic years. All years shall be on semester pattern.
- 8.2 A student eligible to appear for the end examination in a subject, but absent or has failed in the end examination may appear for that subject at the next supplementary examination when offered.
 - a When a student is detained due to lack of credits/shortage of attendance he/she may be readmitted when the semester is offered after fulfillment of academic regulations. In such case, he/she shall be in the academic regulations into which he/she is readmitted.

(iii) With-holding of Results:

If any case of indiscipline or malpractice is pending against candidate, the result of the candidate shall be with held and he/she will not be allowed/promoted into the next higher semester. The issue of awarding degree is liable to be withheld in such cases.

(iv) Grading

After each subject is evaluated for 100 marks, the marks obtained in each subject will be converted to a corresponding letter grade as given below, depending on the range in which the marks obtained by the student fall.

Table - Conversion into Grades and Grade Points assigned

Table Conversion into v	siddes did Gidde i ollits	assigned
Range in which the marks	Grade	Grade points
in the subject fall		Assigned
≥ 90	S (Superior)	10
80-89	A (Excellent)	9
70-79	B (Very Good)	8
60-69	C (Good)	7
50-59	D (Average)	6
40-49	E (Below Average)	4
< 40	F (Fail)	0
Absent	Ab (Absent)	0

A student obtaining Grade F shall be considered failed and will be required to reappear for that subject when the next supplementary examination offered. Same is the case with a student who obtains 'Ab' in end examination.

For **audit** courses "Satisfactory" or "Unsatisfactory" shall be indicated instead of the letter grade and this will not be counted for the computation of SGPA/CGPA.

10.1. Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA):

i. The Semester Grade Point Average (SGPA) is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.,

$$SGPA = \frac{\sum\limits_{i=1}^{n} C_{i} \times GP_{i}}{\sum\limits_{i=1}^{n} C_{i}}$$

where, C_i is the number of credits of the ith subject and GP_i is the grade point scored by the student in the ith course.

ii. The Cumulative Grade Point Average (CGPA) will be computed in the same manner taking into account all the courses undergone by a student over all the semesters of a program, i.e.,

$$\mathsf{CGPA} = \frac{\sum\limits_{j=1}^{m} \mathit{SGPA}_{j} \times \mathit{TC}_{j}}{\sum\limits_{j=1}^{m} \mathit{TC}_{j}}$$

where "SGPA $_{j}$ " is the SGPA of the j^{th} semester and TC $_{j}$ is the total number of credits in that semester.

- (v) Both SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.
- (vi) While computing the SGPA the subjects in which the student is awarded Zero grade points will also be included.

Grade Point: It is a numerical weight allotted to each letter grade on a 10-point scale.

Letter Grade: It is an index of the performance of students in a said course. Grades are denoted byletters S, A, B, C, D, E and F.

11. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. degree he shall be placed in one of the following four classes

Class Awarded	CGPA Secured
First Class with	≥ 7.5
Distinction	
First Class	≥ 6.5 < 7.5
Second Class	≥ 5.5 < 6.5
Pass Class	≥ 4.0 < 5.5

12. Gap Year:

Gap year concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after II year to pursue entrepreneurship full time. This period may be extended to two years at the most and these two years would not be counted for the time for the maximum time for graduation. An evaluation committee shall be constituted by the College to evaluate the proposal submitted by the student and the committee shall decide whether or not to permit the student(s) to avail the Gap Year.

13. Transitory Regulations:

Discontinued, detained, or failed candidates are eligible for readmission as and when the semester is offered after fulfillment of academic regulations. Candidates who have been detained for want of attendance or not fulfilled academic requirements or who have failed after having undergone the course in earlier regulations or have discontinued and wish to continue the course are eligible for admission into the unfinished semester from the date of commencement of class work with the same

or equivalent subjects as and when subjects are offered, and they will be in the academic regulations into which they get readmitted.

Candidates who were permitted with Gap Year shall be eligible for rejoining into the succeeding year of their B. Tech from the date of commencement of class work, and they will be in the academic regulations into which the candidate is presently rejoining.

14. Minimum Instruction Days:

The minimum instruction days including exams for each semester shall be 90 days.

15. Medium of Instruction

The Medium of Instruction is **English** for all courses, laboratories, internal and external examinations, Comprehensive Viva-Voce, seminar presentations and project reports.

16. Rules of Discipline

- (i) Use of mobile phones with camera, in the campus is strictly prohibited.
- (ii) Students shall behave and conduct themselves in a dignified and courteous manner in the campus/Hostels.
- (iii) Students shall not bring outsiders to the institution or hostels.
- (iv) Students shall not steal, deface, damage or cause any loss to the institution property.
- (v) Students shall not collect money either by request or coercion from others within the campus or hostels.
- (vi) Students shall not resort to plagiarism of any nature/extent. Use of material, ideas, figures, code or data without appropriate acknowledgement or permission of the original source shall be treated as cases of plagiarism. Submission of material, verbatim or paraphrased, that is authored by another person or published earlier by oneself shall also be considered as cases of plagiarism.
- (vii) Use of vehicles by the students inside the campus is prohibited.
- (viii) Any conduct which leads to lowering of the esteem of the organization is prohibited.
- (ix) Any student exhibiting prohibited behaviour shall be suspended from the institute. The period of suspension and punishment shall be clearly communicated to the student. The student shall lose the attendance for the suspended period
- (x) Dress Code

Boys: All the boy students should wear formal dresses. Wearing T-shirts and other informal dresses in the campus is strictly prohibited.

Girls: All the girls students shall wear saree/chudidhar with dupatta

17. Punishments for Malpractice cases – Guidelines

The examinations committee may take the following guidelines into consideration while dealing with the suspected cases of malpractice reported by the invigilators/squad members etc; during end examinations. The punishment may be more severe or less severe depending on the merits of the individual cases.

S.no	Nature of Malpractice/Improper conduct	Punishment

1	Possesses or keeps accessible in examination hall, anypaper, note book, programmable calculators, Cellphones, pager, palm computers or any other form ofmaterial concerned with or related to the course of theexamination (theory or practical) in which he isappearing but has not made use of (material shallinclude any marks on the body of the student whichcan be used as an aid in the course of the examination)	Expulsionfrom the examinationhall and cancellation of theperformance in that course only.
2	Uses objectionable, abusive or offensive language inthe answer paper or in letters to the examiners orwrites to the examiner requesting him to award pass marks	Cancellation of the performance inthat course.
3	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance inthat course and all other courses thecandidatehasappeared including practical examinations and projectwork of that semester/year examinations.
4	Gives assistance or guidance or receives it from anyother student orally or by any other body languagemethods or communicates through cell phones withany other student or persons in or outside the exam hallin respect of any matter.	Expulsionfromtheexaminationhalland cancellation of theperformance in that course only ofall the studentsinvolved. In caseof an outsider, he will be handedover to the police and a case shallbe registered against him.
5	Has copied in the examination hall from any paper, book, programmable calculators, palm computers orany other form of material relevant to the course of the examination (theory or practical) in which the studentis appearing.	Expulsionfromtheexaminationhall and cancellation of theperformance in that course and allothercourses including practicalexaminations and project work ofthat semester/year.
6	Comes in a drunken condition to the examination hall.	Expulsionfrom the examinationhall and cancellation of theperformance in that course and allothercourses including practicalexaminations and project work ofthat semester/year.
7	Smuggles in the Answer book or takes out orarrangesto send out the question paper duringthe examination or answer book during or afterthe examination	Expulsion from the examination hall andcancellation of performance in thatcourse and all the other courses includingpractical examinations and project workof that semester/year. The student is alsodebarred for two consecutive semestersfrom class work and all examinations. The continuation of the course by the student is subject to the academicregulations in connection with forfeit of seat.
8	Refuses to obey the orders of the ChiefSuperintendent/Assistant – Superintendent / anyofficer on duty or misbehaves or createsdisturbance of any kind in and around theexamination hall or organizes a walk out orinstigates others to walk out, or threatens	In case of students of the college, theyshall be expelled from examination hallsand cancellation of their performance inthat course and all other courses of thatsemester/year. The students

	theofficer-in charge or any person on duty in oroutside the examination hall of any injury to hisperson or to any of his relations whether by words, either spoken or written or by signs or by visiblerepresentation, assaults the officer-in-charge, orany person on duty in or outside the examination hall or any of his relations, or indulges in any otheract of misconduct or mischief which result indamage to or destruction of property in the examination hall or any part of the College campusor engages in any other act which in the opinion of the officer on duty amounts to use of unfair meansor misconduct or has the tendency to disrupt theorderly conduct of the examination.	also aredebarred and forfeit their seats. In case ofoutsiders, they will be handed over to thepolice and a police case shall beregistered against them.
9	Leaves the exam hall taking away answer scriptor intentionally tears up the script or any partthereof inside or outside the examination hall.	Expulsion from the examination hall andcancellation of performance in that courseand all the other courses including practicalexaminations and project work of thatsemester/year. The candidate is also debarredfor two consecutive semesters from classwork and all end examinations. The continuation of the course by the candidate issubject to the academic regulations inconnection with forfeiture of seat.
10	Possesses any lethal weapon or firearm in theexamination hall.	Expulsion from the examination halland cancellation of the performance inthat course and all other coursesincluding practical examinations andproject work of that semester/year. Thestudent is also debarred and forfeits theseat.
11	If student of the college, who is not acandidate for the particular examination orany person not connected with the collegeindulges in any malpractice or improperconduct mentioned in S.No7 to S.No 9.	For Student of the college: Expulsion fromthe examination hall and cancellation of theperformance in that course and all othercoursesincluding practical examinations andproject work of that semester/year. Thecandidate is also debarred and forfeits theseat. Person(s) who do not belong to theCollege will be handed over to police and, apolice case shall be registered against them.
12	Impersonates any other student inconnection with the examination	The student who has impersonated shall beexpelled from examination hall. The studentis debarred from writing the remaining exams, and rusticated from the college for oneacademic year during which period the student will not be permitted to write anyexam. If the imposter is an outsider, he willbehanded over to the police and a

	case shall beregistered against him. The performance of the original studentwho has been impersonated, shall becancelled in all the courses of the examinationincluding practicals and project work of thatsemsester /year. The student is rusticated fromthe college for two consecutive years duringwhich period the student will not be permittedto write any exam. The continuation of thecourse by the student is subject to theacademic regulations in connection withforfeiture of seat.
13	If any malpractice is detected which is not covered in the above S.No 1 to S.No 12 items, itshall be reported to the college academic council for further action and award suitablepunishment.
14	Malpractice cases identified during sessional examinations will be reported to theexamination committee nominated by Academic council to award suitable punishment.

ACADEMIC REGULATIONS FOR B. TECH.(R15) (LATERAL ENTRY SCHEME)

(Effective for the students getting admitted into II year through Lateral Entry Scheme from the Academic Year 2019-2020 and onwards)

1. Award of B.Tech. Degree

A student admitted in Lateral Entry Scheme (LES) will be declared eligible for the award of the B.Tech degree if he fulfills the following academic regulations:

- a)Pursues a course of study for not less than three academic years and in not more than six academic years.
- b) Registers for 134 credits and secures all 134 credits from II to IV year of Regular B. Tech. program.
- (a) Students, who fail to fulfill the requirement for the award of the degree in <u>six</u> consecutive academic years from the year of admission, shall forfeit their seat.
- (b) The regulations 3 to 6 are to be adopted as that of B. Tech. (Regular).

2. Minimum Academic Requirements:

The following academic requirements have to be satisfied in addition to the attendance requirementsmentioned in item no.6

- i. A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory, practical, design, drawing subject or project if he secures not less than 35% of marks in the end examination and a minimum of 40% of marks in the sum total of the internal evaluation and end examination taken together. For the Seminar & Comprehensive vivavoce he should secure 40% in the internal evaluation.
- ii. A student shall be promoted from third year to fourth year only if he fulfills the academic requirements of 26 (40%) credits from the following examinations, irrespective of whether the candidate takes the end examination or not as per the normal course of study.
 - a. One regular and Two supplementary examinations of II year I semester.
 - b. One regular and one supplementary examinations of II year II semester.
 - c. One regular examination of III year I semester.

And in case if student is already detained for want of credits for particular academic year , the student may make up the credits through supplementary exams of the above exams before the commencement of IV year I semester class work of next year.

3. Course Pattern

- ❖ The entire course of study is three academic years on semester pattern.
- A student eligible to appear for the end examination in a subject, but absent at it or has failed in the end examination may appear for that subject at the next supplementary examination offered.
- ❖ When a student is detained due to lack of credits/shortage of attendance he may be re-admitted when the semester is offered after fulfillment of academic regulations, he shall be in the academic regulations into which he is readmitted.
- **4.** The regulations **9** to **10** are to be adopted as that of B. Tech. (Regular).

5. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree he shall be placed in one of the following four classes:

First Class	with	70% and above	
Distinction			
First Class		Below 70% but not less than 60%	From the aggregate marks secured for 134 Credits (i.e. II
Second Class		Below 60% but not less than 50%	year to IV year)
Pass Class		Below 50% but not less than 40%	

6.The regulations **12** to **17** are to be adopted as that of B. Tech. (Regular). All other regulations asapplicable for B. Tech. Four-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme).

G. PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY, KURNOOL (AUTONOMOUS)

Course Structure for B.Tech. - R18 Regulations ELECTRONICS & COMMUNICATION ENGINEERING

I B.Tech. - I Semester

S.No	Course code	Subject	Theory	Tu / La	ab Credits
1.	A1001	Functional English	3	1	- 3
2.	A1002	Mathematics – I	3	1	- 3
3.	A1501	Computer Programming	3	1	- 3
4.	A1004	Engineering Chemistry	3	1	- 3
5.	A1005	Environmental Studies	3	1	- 3
6.	A1006	English Language Communication Skills Lab	-	-	- 2
7.	A1010	Engineering Chemistry Lab	-	-	- 2
8.	A1502	Computer Programming Lab	-	-	- 2
					21

T Tu C 3 1 3

(A1001) FUNCTIONAL ENGLISH

(Common to All Branches)

Preamble:

English is an international language as well as a living and vibrant one. People have found that knowledge of English is a passport for better career, better pay, and advanced knowledge and for communication with the entire world. As it is a language of opportunities in this global age, English is bound to expand its domain of use everywhere. The syllabus has been designed to enhance communication skills of the students of engineering and pharmacy. The prescribed book serves the purpose of preparing them for everyday communication and to face the global competitions in future.

The text prescribed for detailed study focuses on LSRW skills and vocabulary development. The teachers should encourage the students to use the target language. The classes should be interactive and learner-centered. They should be encouraged to participate in the classroom activities keenly.

In addition to the exercises from the text done in the class, the teacher can bring variety by using authentic materials such as newspaper articles, advertisements, promotional material etc.

Objectives:

To enable the students to communicate in English for academic and social purpose.
To enable the students to acquire structure and written expressions required for their profession.
To develop the listening skills of the students.
To inculcate the habit of reading and critical thinking skills.
To enhance the study skills of the students with emphasis on LSRW skills.

UNIT -I

Topics: Paragraph writing, writing letters, role play, reading graphs, prepositions, designing posters, tenses, making recommendations.

Text: ENVIRONMENTAL CONSCIOUSNESS" from *MINDSCAPES*Climate Change - Green Cover – Pollution

UNIT -II

Topics: Compound nouns, imperatives, writing instructions, interpreting charts and pictures, note making, role play, prefixes, subject-verb agreement.

Text: EMERGING TECHNOLOGIES from *MINDSCAPES*Solar Thermal Power - Cloud Computing - Nanotechnology

UNIT -III

Topics: Making conversations, homonyms and homophones, SMS and use of emotions, past participle for irregular verbs, group discussion, E - mail communication, antonyms, Preparing projects

Text: GLOBAL ISSUES from *MINDSCAPES*

Child Labour - Food Crisis - Genetic Modification - E-Waste - Assistive Technology

UNIT-IV

Topics: Group discussion, affixes, double consonants, debates, writing a book / film review, predicting and problem-solving-future tense, adverbs

Text: SPACE TREK from *MINDSCAPES*

Hubble Telescope - Chandrayan-2 - Anusat - Living Quarters - Space Tourism

UNIT -V

Topics: Compare and contrast, effective writing, group discussion, writing reports, writing advertisements, tweeting and blogging, types of interviews, framing questions.

Text: MEDIA MATTERS from *MINDSCAPES*

History of Media - Language and Media - Milestone in Media - Manipulation by Media -Entertainment Media - Interviews

Text Books:

1. MINDSCAPES: English for Technologists and Engineers, Orient Blackswan, 2014.

References:

- A Practical Course in Effective English Speaking Skills by J.K.Gangal, PHI Publishers, 1. New Delhi.2012
- Technical Communication, Meenakshi Raman, Oxford University Press, 2011. 2.
- 3.
- Spoken English, R.K. Bansal & JB Harrison, Orient Longman, 2013, 4Th edition. Murphy's English Grammar with CD, Murphy, Cambridge University Press, 3 Rd edition. 4.
- 5. An Interactive Grammar of Modern English, Shivendra K. Verma and Hemlatha Nagarajan, Frank Bros & CO,2008.

Outcomes:

Have improved communication in listening, speaking, reading and writing skills in general.
Have developed their oral communication and fluency in group discussions and interviews.
Have improved awareness of English in science and technology context.
Have achieved familiarity with a variety of technical reports.

(A1002) MATHEMATICS – I (Common to All Branches)

Objectives:

- To train the students thoroughly in Mathematical concepts of ordinary differential equations and their applications.
- To prepare students for lifelong learning and successful careers using mathematical concepts of differential and Integral calculus, ordinary differential equations and vector calculus.
- To develop the skill pertinent to the practice of the mathematical concepts including the students abilities to formulate and modeling the problems, to think creatively and to synthesize information.

UNIT - I

Exact, linear and Bernoulli equations, Applications to first order equations; Orthogonal trajectories, Simple electric circuits.

Non-homogeneous linear differential equations of second and higher order with constant coefficients with RHS term of the type e^{ax} , sin ax, cos ax, polynomials in x, e^{ax} V(x), xV(x).

UNIT - II

Method of variation of parameters, linear equations with variable coefficients: Euler-Cauchy

Equations, Legendre's linear equation. Applications of linear differential equations-Mechanical and Electrical oscillatory circuits and Deflection of Beams.

UNIT - III

Taylor"s and Maclaurin"s Series - Functions of several variables - Jacobian - Maxima and Minima of functions of two variables, Lagrange"s method of undetermined Multipliers with three variables only.

Radius of curvature.

UNIT - IV

Multiple integral – Double and triple integrals – Change of Variables – Change of order of integration. Applications to areas and volumes in Cartesian and polar coordinates using double and triple integral.

UNIT - V

Vector Calculus: Gradient – Divergence – Curl and their properties; Vector integration – Line integral - Potential function – Area – Surface and volume integrals. Vector integral theorems: Green"s theorem – Stoke"s and Gauss"s Divergence Theorem (Without proof). Application of Green"s, Stoke"s and Gauss"s Theorems.

Text Books:

- 1. Engineering Mathematics-I, E. Rukmangadachari & E. Keshava Reddy, Pearson Publisher
- 2. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.

References:

- 1. Engineering Mathematics Volume-I, by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad, S.Chand publication.
- 2. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India.
- 3. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 4. Advanced Engineering Mathematics, by Alan Jeffrey, Elsevier.

Outcomes:

• The students become familiar with the application of differential and integral calculus, ordinary differential equations and vector calculus to engineering problems.

•	The students attain the and solve problems in e	abilities to use math ngineering applicati	nematical knowledgions.	ge to analyze,	formulate

T Tu C 3

(A1501) COMPUTER PROGRAMMING (Common to All Branches)

Objectives:

- Understand problem solving techniques
- Understand representation of a solution to a problem
- Understand the syntax and semantics of C programming language
- Understand the significance of Control structures
- Learn the features of C language

UNIT - I

Overview of Computers and Programming - Electronic Computers Then and Now - Computer Hardware - Computer Software - Algorithm - Flowcharts - Software Development Method - Applying the Software Development Method.

Types, Operators and Expressions: Variable Names - Data Types and Sizes - Constants - Declarations - Arithmetic Operators - Relational and Logical Operators - Type Conversions - Increment and Decrement Operators - Bitwise Operators - Assignment Operators and Expressions - Conditional Expressions - Precedence and Order of Evaluation.

UNIT - II

Selections Statements – Iteration Statements – Jump Statements - Expression Statements - Block Statements.

Single Dimensional Arrays – Generating a Pointer to an Array – Passing Single Dimension Arrays to Functions – Strings – Two Dimensional Arrays – Indexing Pointers – Array Initialization – Variable Length Arrays

UNIT - III

Pointer Variables – Pointer Operators - Pointer Expressions – Pointers And Arrays – Multiple Indirection – Initializing Pointers – Pointers to Functions – C"s Dynamic Allocation Functions – Problems with Pointers.

Understanding the scope of Functions – Scope Rules – Type Qualifiers – Storage Class Specifiers-Functions Arguments –The Return Statement.

UNIT - IV

Command line arguments – Recursion – Function Prototypes – Declaring Variable Length Parameter Lists

Structures – Arrays of Structures – Passing Structures to Functions – Structure Pointers – Arrays and Structures within Structures – Unions – Bit Fields – Enumerations – typedef

IINIT - V

Reading and Writing Characters – Reading and Writing Strings – Formatted Console I/O – Printf - Scanf – Standard C Vs Unix File I/O – Streams and Files – File System Basics – Fread and Fwrite – Fseek and Random Access I/O – Fprintf () and Fscanf() – The Standard Streams – The Preprocessor Directives #define and #include.

Text Books:

- 1. "The Complete Reference C"- Fourth Edition- Herbert Schildt- McGrawHill Eduction.
- 2. "The C Programming Language" Second Edition- Brain W. Kernighan- Dennis M. Ritchie-Prentice Hall-India. (UNIT- I)

References:

- 1. Programming in C, Second Edition Pradip Dey, Manas Ghosh, Oxford University Press.
- 2. "C From Theory to Practice"- George S. Tselikis- Nikolaos D. Tselikas- CRC Press.
- 3. "Programming with C"- R S Bichkar- University Press.
- 4. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and

- A. Ananda Rao, Pearson Education. (UNIT-I)
- 5. Computer Fundamentals and C Programming- Second Edition- P.Chenna Reddy-Available at Pothi.com (http://pothi.com/pothi/book/dr-p-chenna-reddy-computer-fundamentals-and-c-programming).

Outcomes:

- Apply problem solving techniques in designing the solutions for a wide-range of problems
- Choose appropriate control structure depending on the problem to be solved
- Modularize the problem and also solution

T Tu C 3

(A1004) ENGINEERING CHEMISTRY (Common to ECE/EIE/ME/IT)

Objectives:

- The Engineering Chemistry course for undergraduate students is framed to strengthen the fundamentals of chemistry and then build an interface of theoretical concepts with their industrial/engineering applications.
- The course main aim is to impart in-depth knowledge of the subject and highlight the role of chemistry in the field of engineering.
- The lucid explanation of the topics will help students understand the fundamental concepts and apply them to design engineering materials and solve problems related to them. An attempt has been made to logically correlate the topic with its application.
- The extension of fundamentals of electrochemistry to energy storage devices such as commercial batteries and fuel cells is one such example.
- After the completion of the course, the student would understand the concepts of chemistry and apply to various materials for engineering applications.

UNIT – I WATER QUALITY AND TREATMENT

Impurities in water, Hardness of water and its Units, Disadvantages of hard water, Estimation of hardness by EDTA method, Numerical problems on hardness, Estimation of dissolved oxygen, Alkalinity, acidity and chlorides in water, Water treatment for domestic purpose (Chlorination, Bleaching powder, ozonisation)

Industrial Use of water:

For steam generation, troubles of Boilers: Scale & Sludge, Priming and Foaming, Caustic Embrittlement and Boiler Corrosion.

Treatment of Boiler Feed water:

Internal Treatment: Colloidal, Phosphate, Carbonate, Calgon and sodium aluminate

treatment. External Treatment: Ion-Exchange and Permutit processes.

Demineralisation of brackish water: Reverse Osmosis and Electrodialysis

UNIT – II POLYMERS

i)Introduction: Basic concepts of polymerisation, Types of polymerisation (Chain Growth (Addition), Step growth (Condensation)), Mechanism: cationic, anionic, free radical and coordination covalent.

Plastomers: Thermosetting and Thermoplatics, Preparation, properties and Engineering applications of PVC, Teflon, Bakelite and nylons.

Elastomers

Natural Rubber; Processing of natural rubbers, Compounding of Rubber

Synthetic Rubber: Preparation, properties and engineering applications of Buna-S, Buna-N, Polyurethene, Polysulfide (Thiokol) rubbers

- ii) Conducting polymers: Mechanism, synthesis and applications of polyacetyline, polyaniline.
- iii) Inorganic Polymers: Basic Introduction, Silicones, Polyphospazins (-(R)2-P=N-) applications

UNIT – III ELECTROCHEMISTRY

- i) Galvanic cells, Nernest Equation, Numerical calculations, Batteries: Rechargeable batteries (Lead acid, Ni-Cd, Lithium Ion Batteries), Fuels cells: (Hydrogen-Oxygen and Methanol-Oxygen, Solid oxide)
- ii) Corrosion: Introduction, type of corrosion (Concentration cell corrosion, Galvanic corrosion), Chemical (Dry) and Electrochemical (Wet) Theory of corrosion. Galvanic series,

factors affecting the

corrosion (Metal and environment). Prevention: Cathodic protection (Sacrificial anode and impressed current), Inhibitors (Anodic and cathodic), electroplating (Copper, nickel and chromium) and electroless plating (Copper and nickel)

UNIT – IV FUELS AND COMBUSTION

Classifications of Fuels – Characteristics of Fuels- Calorific Value – Units, Numerical Problems. Solid Fuels: Coal-Classification and Analysis (proximate and ultimate), Coke :Characteristics of metallurgical coke, Manufacture of Metallurgical Coke by Otto Hoffmann's by product oven processes.

Liquid Fuels:

Petroleum: Refining of Petroleum, Gasoline- Octane Number, Diesel -Cetane Number, Synthetic

Petrol: Bergius Processes, Fischer Troph"s synthesis

Power Alcohol: Manufacture, Advantages and Disadvantages of Power Alcohol

Gaseous Fuels: Natural gas, Producer gas, Water gas, Coal gas and Biogas. Determination calorific value of Gases fuels by Junker"s calorimeter.

Combustion: Basic principles and numerical problems, Flue Gas analysis by Orsat"s apparatus.

UNIT – V CHEMISTRY OF ENGINEERING MATERIALS

- i) Cement: Composition, Classification, preparation (Dry and Wet processes), Setting and Hardening (Hydration and Hydrolysis)
- ii) Refractories: Introduction, Classification, properties and applications
- iii) Lubricants: Introduction, classification (Solid, liquid, semi solid, emulsion and synthetic), Theory of lubrication (Thin film, Thick film & Extreme pressure), properties of lubricants and applications.
- iv) Carbon clusters: Fullerenes and Carbon Nano Tubes (CNT)

Text Books:

- **1.** Engineering Chemistry, First Edition, Jayaveera KN, Subba Reddy GVand Ramachandraiah C, McGraw Hill Higher Education, New Delhi, 2013.
- **2.** A Text Book of Enigneering Chemistry, 15th Edition, Jain and Jain, Dhanapathi Rai Publications, New Delhi, 2013.

References:

- 1. A Text book of Engineering Chemistry, 12th Edition, SS Dhara, Uma, S. Chand Publications, New Delhi, 2010.
- 2. Engineering Chemistry, First edition, K.B. Chandra Sekhar, UN.Das and Sujatha Mishra, SCITECH Publications India Pvt Limited, 2010.
- 3. Engineering Chemistry, First edition, Seshamaheswaramma K and Mridula Chugh, Pearson Education, 2013.

Outcomes: The student is expected to:

- Differentiate between hard and soft water. Understand the disadvantages of using hard water domestically and industrially. Select and apply suitable treatments domestically and industrially.
- Understand the electrochemical sources of energy
- Understand industrially based polymers, various engineering materials.

(A1005) ENVIRONMENTAL STUDIES (Common to ECE/EIE/ME/IT)

Objectives:

To make the students to get awareness on environment, to understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life to save earth from the inventions by the engineers.

UNIT – I

MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES: – Definition, Scope and Importance – Need for Public Awareness.

NATURAL RESOURCES: Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

UNIT - II

ECOSYSTEMS: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

BIODIVERSITY AND ITS CONSERVATION: Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hotsports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, manwildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT – III

ENVIRONMENTAL POLLUTION: Definition, Cause, effects and control measures of:

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT – IV

SOCIAL ISSUES AND THE ENVIRONMENT: From Unsustainable to Sustainable development

Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT - V

HUMAN POPULATION AND THE ENVIRONMENT: Population growth, variation among nations. Population explosion – Family Welfare Programmed. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

FIELD WORK: Visit to a local area to document environmental assets River/forest grassland/hill/mountain — Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds — river, hill slopes, etc..

Text Books:

- 1. Text Book of Environmental Studies for Undergraduate Cources, Erach Bharucha, Universities Press Pvt Ltd, Hyderabad. 2nd Edition 2013.
- 2. Environmental Studies by Kaushik, New Age Pubilishers.

References:

- 1. Environmental Studies by Rajagopalan, Oxford Pubilishers.
- 2. Comprehensive Environmental studies by J.P.Sharma, Laxmi publications.
- 3. Introduction to Environmental engineering and science by Gilbert M. Masters and Wendell P. Ela Printice hall of India Private limited.

Outcomes:

- Students will get the sufficient information that will clarify modern environmental concepts like equitableuse of natural resources, more sustainable life styles etc.
- Students will realize the need to change their approach so as to perceive our own
 environmental issuescorrectly, using practical approach based on observation and self
 learning.
- Students become conversant with the fact that there is a need to create a concern for our environment that will trigger pro-environmental action; including simple activities we can do in our daily life to protect it.
- By studying environmental sciences, students is exposed to the environment that enables one to find out solution of various environmental problems encountered on and often.
- At the end of the course, it is expected that students will be able to identify and analyze environmental problems as well as the risks associated with these problems and efforts to be taken to protect the environment from getting polluted. This will enable every human being to live in a more sustainable manner.

(A1006) ENGLISH LANGUAGE COMMUNICATION SKILLS (ELCS) LAB (Common to All Branches)

The Language Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations and contexts.

Objectives:

- To enable students to learn better pronunciation through stress on word accent, intonation, and rhythm.
- To help the second language learners to acquire fluency in spoken English and neutralize mother tongue influence
- To train students to use language appropriately for interviews, group discussion and public speaking

UNIT - 1

- 1. Phonetics -importance
- 2. Introduction to Sounds of Speech
- 3. Vowels and consonants sounds
- 4. Phonetic Transcription

UNIT-II

- 5. Word Stress
- 6. Syllabification
- 7. Rules of word stress
- 8. Intonation

UNIT - III

- 9. Situational Dialogues
- 10. Role Plays
- 11. JAM
- 12. Describing people/objects/places

UNIT - IV

- 13. Debates
- 14. Group Discussions
- 15. Interview skills

UNIT - V

- 16. Video speech writing
- 17. Book reviews -oral and written

Minimum Requirements for ELCS Lab:

The English Language Lab shall have two parts:

1. Computer Assisted Language Learning (CALL) Lab: The Computer aided Language Lab for 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.

2. The Communication Skills Lab with movable chairs and audio-visual aids with a P.A. system, Projector, a digital stereo-audio & video system and camcorder etc.

System Requirement (Hardware component):

Computer network with LAN with minimum 60 multimedia systems with the following specifications:

- i) P IV Processor
 - a) Speed -2.8 GHZ
 - b) RAM 512 MB Minimum
 - c) Hard Disk 80 GB
- ii) Headphones of High quality

Suggested Software:

- 1. Clarity Pronunciation Power Part I (Sky Pronunciation)
- 2. Clarity Pronunciation Power part II
- 3. K-Van Advanced Communication Skills
- 4. Walden InfoTech Software.

References:

- 1. A Textbook of English Phonetics for Indian Students 2nd Ed T. Balasubramanian. (Macmillian),2012.
- 2. A Course in Phonetics and Spoken English, Dhamija Sethi, Prentice-Hall of India Pvt.Ltd
- 3. Speaking English Effectively, 2nd Edition Krishna Mohan & NP Singh, 2011. (Mcmillan).
- 4. A Hand book for English Laboratories, E.Suresh Kumar, P.Sreehari, Foundation Books, 2011
- 5. Spring Board Succes, Sharada Kouhik, Bindu Bajwa, Orient Blackswan, Hyderbad, 2010.

Outcomes:

- Become active participants in the learning process and acquire proficiency in spoken English.
- Speak with clarity and confidence thereby enhance employability skills.

(A1010) ENGINEERING CHEMISTRY LAB (Common to ECE/EIE/ME/IT)

Objectives:

- Will learn practical understanding of the redox reaction
- Will learn the preparation and properties of synthetic polymers and other material that would provide sufficient impetus to engineer these to suit diverse applications
- Will also learn the hygiene aspects of water would be in a position to design methods to produce potable water using modern technology.

List of Experiments:

- 1. Determination of total hardness of water by EDTA method.
- 2. Determination of Copper by EDTA method.
- 3. Estimation of Dissolved Oxygen by Winkler"s method
- 4. Estimation of iron (II) using diphenylamine indicator (Dichrometry Internal indicator method).
- 5. Determination of Alkalinity of Water
- 6. Determination of acidity of Water
- 7. Preparation of Phenol-Formaldehyde (Bakelite)
- 8. Determination of Viscosity of oils using Redwood Viscometer I
- 9. Determination of Viscosity of oils using Redwood Viscometer II
- 10. Determination of calorific value of gaseous fuels by Junker"s Calorimeter
- 11. Conductometric estimation of strong acid using standard sodium hydroxide solution
- 12. Determination of Corrosion rate and inhibition efficiency of an inhibitor for mild steel in hydrochloric acid medium.
- 13. Potentio metric determination of iron using standard potassium dichromate
- 14. Colorometric estimation of manganese.
- 15.pH meter calibration and measurement of pH of water and various other samples.

 (Any 10 experiments from the above list)

References:

- 1. Vogel"s Text book of Quantitative Chemical Analysis, Sixth Edition Mendham J et al, Pearson Education, 2012.
- 2. Chemistry Practical—Lab Manual, First edition, Chandra Sekhar KB, Subba Reddy GV and Jayaveera KN, SM Enterprises, Hyderabad, 2014.

Outcomes:

- Would be confident in handling energy storage systems and would be able combat chemical corrosion
- Would have acquired the practical skill to handle the analytical methods with confidence.
- Would feel comfortable to think of design materials with the requisite properties
- Would be in a position to technically address the water related problems.

P C

(A1502) COMPUTER PROGRAMMING LAB (Common to All branches)

Objectives:

- Learn C Programming language
- To make the student solve problems, implement algorithms using C language.

List of Experiments/Tasks

- 1. Practice DOS and LINUX Commands necessary for design of C Programs.
- 2. Study of the Editors, Integrated development environments, and Compilers in chosen platform.
- 3. Write, Edit, Debug, Compile and Execute Sample C programs to understand the programming environment.
- 4. Practice programs: Finding the sum of three numbers, exchange of two numbers, maximum of two numbers, To read and print variable values of all data types of C language, to find the size of all data types, to understand the priority and associativity of operators using expressions, to use different library functions of C language.
- 5. Write a program to find the roots of a Quadratic equation.
- 6. Write a program to compute the factorial of a given number.
- 7. Write a program to check whether the number is prime or not.
- 8. Write a program to find the series of prime numbers in the given range.
- 9. Write a program to generate Fibonacci numbers in the given range.
- 10. Write a program to find the maximum of a set of numbers.
- 11. Write a program to reverse the digits of a number.
- 12. Write a program to find the sum of the digits of a number.
- 13. Write a program to find the sum of positive and negative numbers in a given set of numbers
- 14. Write a program to check for number palindrome.
- 15. Write a program to evaluate the sum of the following series up to "n" terms $=1+x+x^2/2!+x^3/3!+x^4/4!+----$
- 16. Write a program to generate Pascal Triangle.
- 17. Write a program to read two matrices and print their sum and product in the matrix form
- 18. Write a program to read matrix and perform the following operations.
 - i. Find the sum of Diagonal Elements of a matrix.
 - ii. Print Transpose of a matrix.
 - iii. Print sum of even and odd numbers in a given matrix.
- 19. Write a program to accept a line of characters and print the number of Vowels, Consonants, blank spaces, digits and special characters.
- 20. Write a program to insert a substring in to a given string and delete few characters from the string. Don't use library functions related to strings.
- 21. Write a program to perform the operations addition, subtraction, multiplication of complex numbers.
- 22. Write a program to split a "file" in to two files, say file1 and file2. Read lines into the "file" from standard input. File1 should consist of odd numbered lines and file2 should consist of even numbered lines.
- 23. Write a program to merge two files.
- 24. Write a program to implement numerical methods Lagrange"s interpolation, Trapezoidal rule.

- 25. Write a program to read a set of strings and sort them in alphabetical order.
- 26. Write a program to read two strings and perform the following operations without using built-in string Library functions and by using your own implementations of functions.
 - i. String length determination
- ii .Compare Two Strings
- iii. Concatenate them, if they are not equal
- iv. String reversing
- 27. Write programs using recursion for finding Factorial of a number, GCD, LCM, and solving Towers of Hanoi problem.
- 28. Write a program to exchange two numbers using pointers.
- 29. Write a program to read student records into a file. Record consists of rollno, name and marks of a student in six subjects and class. Class field is empty initially. Compute the class of a student. The calculation of the class is as per JNTUA rules. Write the first class, second class, third class and failed students lists separately to another file.
- 30. A file consists of information about employee salary with fields employeeid, name, Basic, HRA, DA, IT, other-deductions, Gross and Net salary. Initially only employeeid, name, and basic have valid values. HRA is taken as 10% of the basic, DA is taken as 80% of basic, IT is 20% of the basic, other deductions is user specified. Compute the Gross and Net salary of the employee and update the file.
- 31. Write a program to perform Base (decimal, octal, hexadecimal, etc) conversion.
- 32. Write a program to find the square root of a number without using built-in library function.
- 33. Write a program to convert from string to number.
- 34. Write a program to implement pseudo random generator.
- 35. Write a program to generate multiplication tables from 11 to 20.
- 36. Write a program to express a four digit number in words. For example 1546 should be written as one thousand five hundred and forty six.
- 37. Write a program to generate a telephone bill. The contents of it and the rate calculation etc should be as per BSNL rules. Student is expected to gather the required information through the BSNL website.
- 38. Write a program to find the execution time of a program.
- 39. Design a file format to store a person's name, address, and other information. Write a program to read this file and produce a set of mailing labels

Note:

- 1. Instructors are advised to conduct the lab in LINUX/UNIX environment also
- 2. The above list consists of only sample programs. Instructors may choose other programs to illustrate certain concepts, wherever is necessary. Programs should be there on all the concepts studied in Theory. Instructors are advised to change atleast 25% of the programs every year until the next syllabus revision.

References:

- 1. "How to Solve it by Computer", R.G. Dromey, Pearson.
- 2. "The C Programming Language", Brian W. Kernighan, Dennis M. Ritchie, Pearson.
- 3. "Let us C", Yeswant Kanetkar, BPB publications
- 4. "Pointers in C", Yeswant Kanetkar, BPB publications.
- 5. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A.Ananda Rao, Pearson Education.

Outcomes:

• Apply problem solving techniques to find solutions to problems

- Able to use C language features effectively and implement solutions using C language.
- Improve logical skills.

G. PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY, KURNOOL (AUTONOMOUS)

ELECTRONICS & COMMUNICATION ENGINEERING

I-II Semester

S.No	Course code	Subject	Th	Tu/I	Org/L	∟ab	Credits
1.	A1008	English for Professional	3	1	-	-	3
		Communication					
2.	A1009	Mathematics – II	3	1	-	-	3
3.	A1201	Network Analysis	3	1	-	-	3
4.	A1003	Engineering Physics	3	1	-	-	3
5.	A1301	Engineering Drawing	0	-	6	-	3
6.	A1202	Network Analysis Lab	-	-	-	4	2
7.	A1007	Engineering Physics Lab	-	-	-	4	2
8.	A1302	Engineering and IT Workshop	_	-	-	4	2
	•		12	4	6	12	21

(A1008) ENGLISH FOR PROFESSIONAL COMMUNICATION

1. INTRODUCTION:

English is a global language and has international appeal and application. It is widely used in a variety of contexts and for varied purposes. The students would find it useful both for social and professional development. There is every need to help the students acquire skills useful to them in their career as well as workplace. They need to write a variety of documents and letters now extending into professional domain that cuts across business and research also. The syllabus has been designed to enhance communication skills of the students of engineering and pharmacy. The prescribed book serves the purpose of preparing them for everyday communication and to face the global competitions in future.

The text prescribed for detailed study focuses on LSRW skills and vocabulary development. The teachers should encourage the students to use the target language. The classes should be interactive and learner-centered. They should be encouraged to participate in the classroom activities keenly.

In addition to the exercises from the text done in the class, the teacher can bring variety by using authentic materials such as newspaper articles, advertisements, promotional material etc.

2. OBJECTIVES:

- 1. To develop confidence in the students to use English in everyday situations.
- 2. To enable the students to read different discourses so that they appreciate English for science and technologies.
- 3. To improve familiarity with a variety of technical writings.
- 4. To enable the students to acquire structure and written expressions required for their profession.
- 5. To develop the listening skills of the students.

3. SYLLABUS:

UNIT -I

Topics: Group discussion, cause and effect, events and perspectives, debate, if conditional, essay writing.

Text: LESSONS FROM THE PAST from MINDSCAPES

Importance of History - Differing Perspectives - Modern Corporatism - Lessons From The Past

UNIT-II

Topics: Idioms, essay writing, power point presentation, modals, listening and rewriting, preparing summary, debate, group discussion, role play, writing a book review, conversation

Text: 'ENERGY' from MINDSCAPES

Renewable and Non-Renewable Sources - Alternative Sources - Conservation - Nuclear Energy

UNIT-III

Topics: Vocabulary, impromptu speech, creative writing, direct and indirect speech, fixed expressions, developing creative writing skills, accents, presentation skills, making posters, report writing

Text: 'ENGINEERING ETHICS' from MINDSCAPES

Challenger Disaster - Biotechnology - Genetic Engineering - Protection From Natural Calamities

UNIT-IV

Topics: Vocabulary, Conversation, Collocation, Group discussion, Note-making, Clauses, Interpreting charts and tables, Report writing.

Text: 'TRAVEL AND TOURISM' from *MINDSCAPES*

Advantages and Disadvantages of Travel - Tourism - Atithi Devo Bhava - Tourism in India **UNIT-V**

Topics: Vocabulary, phrasal verbs, writing a profile, connectives, discourse markers, problem-solving, telephone skills, application letters, curriculum vitae, interviews (telephone and personal)

Text: 'GETTING JOB-READY' from MINDSCAPES

SWOT Analysis - Companies And Ways Of Powering Growth - Preparing For Interviews **Prescribed Text**

MINDSCAPES: English for Technologists and Engineers, Orient Blackswan, 2014.

REFERENCES:

- 1. Effective Tech Communication, Rizvi, Tata McGraw-Hill Education, 2007.
- 2. **Technical Communication,** Meenakshi Raman, Oxford University Press.
- 3. English Conversations Prcatice, Grant Taylor, Tata Mc GrawHill publications, 2013.
- **4.Practical English Grammar.** Thomson and Martinet, OUP, 2010.

Expected Outcomes:

At the end of the course, students would be expected to:

- 1. Have acquired ability to participate effectively in group discussions.
- 2. Have developed ability in writing in various contexts.
- 3. Have acquired a proper level of competence for employability.

T Tu C 3

(A1009) MATHEMATICS – II

(Common to All Branches)

<u>Objectives:</u> Our emphasis will be more on conceptual understanding and application of Fourier series, Fourier, Z and Laplace transforms and solution of partial differential equations.

UNIT – I

Laplace transform of standard functions – Inverse transform – First shifting Theorem, Transforms of derivatives and integrals – Unit step function – Second shifting theorem – Dirac's delta function – Convolution theorem – Laplace transform of Periodic function.

Differentiation and integration of transform – Application of Laplace transforms to ordinary differential equations of first and second order.

UNIT - II

Fourier Series: Determination of Fourier coefficients – Fourier series – Even and odd functions – Fourier series in an arbitrary interval – Even and odd periodic continuation – Half-range Fourier sine and cosine expansions- Parseval's formula- Complex form of Fourier series.

UNIT - III

Fourier integral theorem (only statement) – Fourier sine and cosine integrals. Fourier transform – Fourier sine and cosine transforms – Properties – Inverse transforms – Finite Fourier transforms.

UNIT - IV

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Method of separation of variables – Solutions of one dimensional wave equation, heat equation and two-dimensional Laplace's equation under initial and boundary conditions.

UNIT - V

z-transform – Inverse z-transform – Properties – Damping rule – Shifting rule – Initial and final value theorems. Convolution theorem – Solution of difference equations by z-transforms.

TEXT BOOKS:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna publishers.
- 2. Engineering Mathematics, Volume II, E. Rukmangadachari Pearson Publisher.

REFERENCES:

- 1. Mathematical Methods by T.K.V. Iyengar, B.Krishna Gandhi, S.Ranganatham and M.V.S.S.N.Prasad S. Chand publication.
- 2. Higher Engineering Mathematics, by B.V.Ramana, Mc Graw Hill publishers.
- 3. Advanced Engineering Mathematics, by Erwin Kreyszig, Wiley India.

<u>Outcomes:</u> The student gains the knowledge to tackle the engineering problems using the concepts of Fourier series, various transforms and partial differential equations.

(A1201) NETWORK ANANLYSIS

Objective:

To help students develop an understanding on analyzing electrical circuits using various techniques. To make the student familiarize with the fundamental concepts of coupled circuits, resonance, filters and to analyze the transient response in electric circuits.

UNIT I

Circuit Analysis Techniques: Voltage and Current Laws, Basic Nodal and Mesh Analysis, Network Theorems- Linearity and Superposition, Reciprocity, Thevenin's, Norton's, Maximum Power Transfer, Milliman's theorems. Source Transformation.

UNIT II

DC Transient Circuits : The Source free RL, RC & RLC Circuits. Natural & Forced Response of RL,RC & RLC Circuits. RC & RL Circuit responses to Pulse and Exponential signals.

Unit III

Sinusoidal steady state analysis: Characteristics of Sinusoids, Forced Response of Sinusoidal Functions, The Complex forcing Function, The Phasor, Phasor relationships for R,L, and C, Impedance, Admittance. Instantaneous Power, Average Power, Effective Values of Current and Voltage, Apparent Power, Power Factor, Complex Power.

UNIT IV

Resonance: Introduction, Definition of 'quality factor **Q**' of inductor and capacitor, Series resonance, Bandwidth of the series resonant circuits, Parallel resonance (or anti-resonance), Conditions for maximum impedance, Currents in parallel resonance, , Bandwidth of parallel resonant circuits, General case of parallel resonance circuit. **Magnetically Coupled Circuits:** Mutual Inductance, Energy Considerations, The Linear Transformer, The Ideal Transformer **Unit V**

Two Port Networks & Filters: Relationship of two port variables, Short circuit Admittance parameters, Open circuit Impedance parameters, Transmission Parameters, Hybrid Parameters, Relationship between parameter sets, Parallel connection of two port networks. **Filters**: Introduction, the neper & decibel, Characteristic Impedance of symmetrical networks, Currents & voltage ratios as exponentials; the propagation constant, Hyperbolic trigonometry, Properties of symmetrical networks, Filter fundamentals; pass and stop bands, Behavior of characteristic impedance, The constant – k low pass filter, the constant – k high

pass filter, band Pass Filters, band reject filters - illustrated problems.

Text Books:

- 1. W H Hayt, J E Kemmerly and S M Durbin, "Engineering Circuit Analysis", Tata McGraw-Hill, 7th edition, 2010.
- **2.** John D. Ryder, "Networks, Lines, and Fields," PHI publications, Second Edition, 2012.

Reference Books:

Van Valkenburg, "Network Analysis", PHI, 3rd Edition, 2011.
 N C Jagan & C Lakshminarayana "Network Analysis" BS Publications 3rd Edn.2014

(A1003) ENGINEERING PHYSICS (Common to All Branches)

Objectives:

- To evoke interest on applications of superposition effects like interference and diffraction, the mechanisms of emission of light, achieving amplification of electromagnetic radiation through stimulated emission, study of propagation of light through transparent dielectric waveguides along with engineering applications.
- To enlighten the periodic arrangement of atoms in crystals, direction of Bragg planes, crystal structure determination by X-rays and non-destructive evaluation using ultrasonic techniques.
- To get an insight into the microscopic meaning of conductivity, classical and quantum free electron model, the effect of periodic potential on electron motion, evolution of band theory to distinguish materials and to understand electron transport mechanism in solids.
- To open new avenues of knowledge and understanding semiconductor based electronic devices, basic concepts and applications of semiconductors and magnetic materials have been introduced which find potential in the emerging micro device applications.
- To give an impetus on the subtle mechanism of superconductors in terms of conduction of electron pairs using BCS theory, different properties exhibited by them and their fascinating applications. Considering the significance of microminiaturization of electronic devices and significance of low dimensional materials, the basic concepts of nanomaterials, their synthesis, properties and applications in emerging technologies are elicited.

UNIT - I

PHYSICAL OPTICS, LASERS AND FIBRE OPTICS

Physical Optics: Interference (Review) – Interference in thin film by reflection –Newton's rings –Diffraction (Review) - Fraunhofer diffraction due to single slit, double slit and diffraction grating.

Lasers: Characteristics of laser – Spontaneous and stimulated emission of radiation – Einstein's coefficients — Population inversion – Excitation mechanism and optical resonator – Nd:YAG laser - He-Ne laser – Semiconductor Diode laser - Applications of lasers

Fiber optics: Introduction - construction and working principle of optical fiber -Numerical aperture and acceptance angle - Types of optical fibers - Attenuation and losses in Optical fibers -Block diagram of Optical fiber communication system - Applications of optical fibers

UNIT - II

CRYSTALLOGRAPHY AND ULTRASONICS

Crystallography: Introduction – Space lattice –Unit cell – Lattice parameters –Bravias lattice – Crystal systems – Packing fractions of SC, BCC and FCC - Directions and planes in crystals – Miller indices – Interplanar spacing in cubic crystals – X-ray diffraction - Bragg's law – Powder method.

Ultrasonics: Introduction – Production of ultrasonics by piezoelectric method – Properties and detection – Applications in non-destructive testing.

IINIT – III

QUANTUM MECHANICS AND ELECTRON THEORY

Quantum Mechanics: Matter waves – de'Broglie hypothesis and properties - Schrodinger's time dependent and independent wave equations – Physical significance of wave function - Particle in one dimensional infinite potential well.

Electron theory: Classical free electron theory – Equation for electrical conductivity – Quantum free electron theory – Fermi-Dirac distribution – Source of electrical resistance – Kronig-Penny model (qualitative treatment) – Origin of bands in solids – Classification of solids into conductors, semiconductors and insulators.

UNIT - IV

SEMICONDUCTORS AND MAGNETIC MATERIALS

Semiconductors: Intrinsic and extrinsic semiconductors (Qualitative treatment) – Drift & diffusion currents and Einstein's equation – Hall effect - Direct and indirect band gap semiconductors – Formation of p-n junction.

Magnetic materials: Introduction and basic definitions – Origin of magnetic moments – Bohr magnetron – Classification of magnetic materials into dia, para, ferro, antiferro and ferri magnetic materials (Qualitative treatment) – Hysteresis - Soft and hard magnetic materials, applications of magnetic materials.

UNIT - V

SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS

Superconductivity: Introduction - Effect of magnetic field - Meissner effect - Type I and Type II superconductors - Flux quantization - Penetration depth - BCS theory (qualitative treatment) — Josephson effects - Applications of superconductors.

Physics of Nanomaterials: Introduction - Significance of nanoscale and types of nanomaterials - Physical properties: optical, thermal, mechanical and magnetic properties - Synthesis of nanomaterials by Top down and bottom up approaches: ball mill, chemical vapour deposition, and sol gel - Applications of nanomaterials.

Text Books:

- 1. Engineering Physics K.Thyagarajan, 5th Edition, MacGraw Hill Publishers, NewDelhi, 2014.
- 2. Physics for Engineers N.K Verma, 1st Edition, PHI Learning Private Limited, New Delhi,2014.

References:

- 1. Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, 10^{th} Edition, S.Chand and
 - Company, New Delhi, 2014.
- Engineering Physics D K Pandey, S. Chaturvedi, 2nd Edition, Cengage Learning, New Delhi, 2013.
- 3. Engineering Physics D.K Bhattacharya, Poonam Tandon, 1nd Edition, Oxford University Press, New Delhi, 2015.

Outcomes:

- The different realms of physics and their applications in both scientific and technological systems are achieved through the study of physical optics, lasers and fibre optics.
- The important properties of crystals like the presence of long-range order and periodicity, structure determination using X-ray diffraction are focused along with defects in crystals and ultrasonic non-destructive techniques.

- The discrepancies between the classical estimates and laboratory observations of physical properties exhibited by materials would be lifted through the understanding of quantum picture of subatomic world.
- The electronic and magnetic properties of materials were successfully explained by free electron theory and the bases for the band theory are focused.
- The properties and device applications of semiconducting and magnetic materials are illustrated.

The importance of superconducting materials and nanomaterials along with their engineering applications are well elucidated.

(A1301) ENGINEERING DRAWING (Common to All Branches)

Objectives:

- To gain and understanding of the basics of geometrical constructions of various planes and solids, understanding system of graphical representation of various objects and various views to draft and read the products to be designed and eventually for manufacturing applications.
- To learn about various projections, to understand complete dimensions and details of object.
- Ultimately student must get imaginary skill to put an idea of object, circuit, assembly of parts in black & white, to design a product and to understand the composition, which can be understood universally.

UNIT I

Introduction to Engineering Drawing: Principles of Engineering Graphics and their Significance- Conventions in Drawing-Lettering – BIS Conventions. Curves used in Engineering Practice. a) Conic Sections including the Rectangular Hyperbola- General method only, b) Cycloid, Epicycloid and Hypocycloid

UNIT II

Scales: Plain, Diagonal and Vernier;

Projection of Points: Principles of orthographic projection – Convention – First angle projections, projections of points.

UNIT III

Projections of Lines: lines inclined to one or both planes, Problems on projections, Finding True lengths.

Projections of Planes: Projections of regular plane surfaces- plane surfaces inclined to both planes.

UNIT IV

Projections of Solids: Projections of Regular Solids with axis inclined to both planes.

Developments of Solids: Development of Surfaces of Right Regular Solids-Prism, Cylinder, Pyramid, Cone.

UNIT V

Isometric and Orthographic Projections: Principles of isometric projection- Isometric Scale- Isometric Views- Conventions- Isometric Views of lines, Planes, Simple solids (cube, cylinder and cone). Isometric projections of spherical parts. Conversion of isometric Views to Orthographic Views.

Text Books:

- 1. Engineering Drawing, N.D. Bhatt, Charotar Publishers
- 2. Engineering Drawing, K.L. Narayana & P. Kannaih, Scitech Publishers, Chennai References:
- 1. Engineering Drawing, Johle, Tata McGraw-Hill Publishers
- 2. Engineering Drawing, Shah and Rana, 2/e, Pearson Education
- 3. Engineering Drawing and Graphics, Venugopal/New age Publishers
- 4. Engineering Graphics, K.C. John, PHI,2013
- 5. Engineering Drawing, B.V.R. Guptha, J.K. Publishers

Outcomes:

- Drawing 2D and 3D diagrams of various objects.
 Learning conventions of Drawing, which is an Universal Language of Engineers.
- Drafting projections of points, planes and solids.

2

(A1202) NETWORK ANALYSIS LAB

- 1. Verification of KCL & KVL for any network.
- 2. Verification of Superposition Theorem with analysis.
- 3. Verification of Thevenin's Theorem with analysis.
- 4. Verification of Maximum Power Transfer Theorem with analysis.
- 5. Analysis of RL & RC circuits for pulse excitation.
- 6. Frequency response of series resonance circuit with analysis and design.
- 7. Frequency response of parallel resonance circuit with analysis and design.
- 8. Design and frequency response of constant 'k' low pass & high pass filters.
- 9. Design and frequency response of Band pass filter.
- 10. Design and frequency response of Notch filter.
- 11. Determination of phase of a sinusoidal signal when passed through RL or RC circuits.
- 12. Impedance transformation through transformer.

Note:- Ten experiments must be conducted in the semester.

Components & Equipment required:-

- 1. Bread boards, passive components, R, L, and C with different ratings.
- 2. Dual power supplies, function generators, CROs.

(A1007) ENGINEERING PHYSICS LABORATORY (Common to All Branches)

Objectives:

- Will recognize the important of optical phenomenon like Interference and diffraction.
- Will understand the role of optical fiber parameters and signal losses in communication.
- Will recognize the importance of energy gap in the study of conductivity and hall effect

in a semiconductor

- Will understand the applications of B H curve.
- Will acquire a practical knowledge of studying the crystal structure in terms of lattice constant.
- Will recognize the application of laser in finding the particle size and its role in diffraction studies.
- Will learn to synthesis of the nanomaterials and recognize its importance by knowing its nano particle size and its impact on its properties.

Any 10 of the following experiments has to be performed during the I year I semester

- 1. Determination of radius of curvature of a Plano-convex lens by forming Newton's rings.
- 2. Determination of wavelength of given source using diffraction grating in normal incidence method.
- 3. Determination of Numerical aperture, acceptance angle of an optical fiber.
- 4. Energy gap of a Semiconductor diode.
- 5. Hall effect Determination of mobility of charge carriers.
- 6. B-H curve Determination of hysteresis loss for a given magnetic material.
- 7. Determination of Crystallite size using X-ray pattern (powder) using debye-scheerer method
- 8. Determination of particle size by using laser source.
- 9. Determination of dispersive power of a prism.
- 10. Determination of thickness of the thin wire using wedge Method.
- 11. Laser: Diffraction due to single slit
- 12. Laser: Diffraction due to double slit
- 13. Laser: Determination of wavelength using diffraction grating
- 14. Magnetic field along the axis of a current carrying coil Stewart and Gee's method.
- 15. Synthesis of nanomaterial by any suitable method.

References

- 1. Engineering Physics Practicals NU Age Publishing House, Hyderabad.
- 2. Engineering Practical physics Cengage Learning, Delhi.

Outcomes:

- Would recognize the important of optical phenomenon like Interference and diffraction.
- Would have acquired the practical application knowledge of optical fiber, semiconductor, dieclectric and magnetic materials, crystal structure and lasers by the study of their relative parameters.

Would recognize the significant importance of nanomaterials in various engineering fields.

(A1302) ENGINEERING & I.T. WORKSHOP

ENGINEERING WORKSHOP

Course Objective:

The budding Engineer may turn out to be a technologist, scientist, entrepreneur, practitioner, consultant etc. There is a need to equip the engineer with the knowledge of common and newer engineering materials as well as shop practices to fabricate, manufacture or work with materials. Essentially he should know the labour involved, machinery or equipment necessary, time required to fabricate and also should be able to estimate the cost of the product or job work. Hence engineering work shop practice is included to introduce some common shop practices and on hand experience to appreciate the use of skill, tools, equipment and general practices to all the engineering students.

1. TRADES FOR EXERCISES:

- a. Carpentry shop— Two joints (exercises) involving tenon and mortising, groove and tongue: Making middle lap T joint, cross lap joint, mortise and tenon T joint, Bridle T joint from out of 300 x 40 x 25 mm soft wood stock
- b. Fitting shop— Two joints (exercises) from: square joint, V joint, half round joint or dove tail joint out of 100 x 50 x 5 mm M.S. stock
- c. Sheet metal shop—Two jobs (exercises) from: Tray, cylinder, hopper or funnel from out of 22 or 20 guage G.I. sheet
- d. House-wiring—Two jobs (exercises) from: wiring for ceiling rose and two lamps (bulbs) with independent switch controls with or without looping, wiring for stair case lamp, wiring for a water pump with single phase starter.
- e. Foundry–Preparation of two moulds (exercises): for a single pattern and a double pattern.
- f. Welding Preparation of two welds (exercises): single V butt joint, lap joint, double V butt joint or T fillet joint.

2. TRADES FOR DEMONSTRATION:

- a. Plumbing
- b. Machine Shop
- c. Metal Cutting

Apart from the above the shop rooms should display charts, layouts, figures, circuits, hand tools, hand machines, models of jobs, materials with names such as different woods, wood faults, Plastics, steels, meters, gauges, equipment, CD or DVD displays, First aid, shop safety etc. (though they may not be used for the exercises but they give valuable information to the student). In the class work or in the examination knowledge of all shop practices may be stressed upon rather than skill acquired in making the job.

References:

- 1. Engineering Work shop practice for JNTU, V. Ramesh Babu, VRB Publishers Pvt. Ltd., 2009
- 2. Work shop Manual / P.Kannaiah/ K.L.Narayana/ SciTech Publishers.
- 3. Engineering Practices Lab Manual, Jeyapoovan, SaravanaPandian, 4/e Vikas
- 4. Dictionary of Mechanical Engineering, GHF Nayler, Jaico Publishing House.

I.T. WORKSHOP

Course Objective:

- To provide Technical training to the students on Productivity tools like Word processors, Spreadsheets, Presentations
- To make the students know about the internal parts of a computer, assembling a computer from the parts, preparing a computer for use by installing the operating system
- To learn about Networking of computers and use Internet facility for Browsing and Searching.

Learning Outcome:

- Disassemble and Assemble a Personal Computer and prepare the computer ready to use.
- Prepare the Documents using Word processors
- Prepare Slide presentations using the presentation tool
- Interconnect two or more computers for information sharing
- Access the Internet and Browse it to obtain the required information
- Install single or dual operating systems on computer

Preparing your Computer (5 weeks)

Task 1: Learn about Computer: Identify the internal parts of a computer, and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.

Task 2: Assembling a Computer: Disassemble and assemble the PC back to working condition. Students should be able to trouble shoot the computer and identify working and non-working parts. Student should identify the problem correctly by various methods available (eg: beeps). Students should record the process of assembling and trouble shooting a computer.

Task 3: Install Operating system: Student should install Linux on the computer. Student may install another operating system (including proprietary software) and make the system dual boot or multi boot. Students should record the entire installation process.

Task 4: Operating system features: Students should record the various features that are supported by the operating system(s) installed. They have to submit a report on it. Students should be able to access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc. Students should install new application software and record the installation process.

Networking and Internet (4 weeks)

Task 5: Networking: Students should connect two computers directly using a cable or wireless connectivity and share information. Students should connect two or more computers using switch/hub and share information. Crimpling activity, logical configuration etc should be done by the student. The entire process has to be documented.

Task 6: Browsing Internet: Student should access the Internet for Browsing. Students should search the Internet for required information. Students should be able to create e-mail account and send email. They should get acquaintance with applications like Facebook, skype etc.

If Intranet mailing facility is available in the organization, then students should share the information using it. If the operating system supports sending messages to multiple users (LINUX supports it) in the same network, then it should be done by the student. Students are expected to submit the information about different browsers available, their features, and search process using different natural languages, and creating e-mail account.

Task 7: Antivirus: Students should download freely available Antivirus software, install it and use it to check for threats to the computer being used. Students should submit information about the features of the antivirus used, installation process, about virus definitions, virus engine etc.

Productivity tools (6 weeks)

Task 8: Word Processor: Students should be able to create documents using the word processor tool. Some of the tasks that are to be performed are inserting and deleting the characters, words and lines, Alignment of the lines, Inserting header and Footer, changing the font, changing the color, including images and tables in the word file, making page setup, copy and paste block of text, images, tables, linking the images which are present in other directory, formatting paragraphs, spell checking, etc. Students should be able to prepare project cover pages, content sheet and chapter pages at the end of the task using the features studied. Students should submit a user manual of the word processor considered.

Task 9: Spreadsheet: Students should be able to create, open, save the application documents and format them as per the requirement. Some of the tasks that may be practiced are Managing the worksheet environment, creating cell data, inserting and deleting cell data, format cells, adjust the cell size, applying formulas and functions, preparing charts, sorting cells. Students should submit a user manual of the Spreadsheet application considered.

Task 10: Presentations: creating, opening, saving and running the presentations, Selecting the style

for slides, formatting the slides with different fonts, colors, creating charts and tables, inserting and deleting text, graphics and animations, bulleting and numbering, hyperlinking, running the slide show, setting the timing for slide show. Students should submit a user manual of the Presentation tool considered.

Optional Tasks:

Task 11: Laboratory Equipment: Students may submit a report on specifications of various equipment that may be used by them for the laboratories in their curriculum starting from I B.Tech to IV. B.Tech. It can vary from department to department. Students can refer to their syllabus books, consult staff members of the concerned department or refer websites. The following is a sample list. Instructors may make modifications to the list to suit the department concerned.

- Desktop computer
- Server computer
- Switch (computer science related)
- Microprocessor kit
- Micro controller kit
- Lathe machine
- Generators
- Construction material
- Air conditioner
- UPS and Inverter
- RO system
- Electrical Rectifier
- CRO
- Function Generator
- Microwave benches

Task 12: Software: Students may submit a report on specifications of various software that may be used by them for the laboratories in their curriculum starting from I B.Tech to IV. B.Tech. The software may be proprietary software or Free and Open source software. It can vary from department to department. Students can refer to their syllabus books, consult staff members of the concerned department or refer websites. The following is a sample list. Instructors may make modifications to the list to suit the department concerned.

- Desktop operating system
- Server operating system
- Antivirus software
- MATLAB
- CAD/CAM software
- AUTOCAD

References:

- 1. Introduction to Computers, Peter Norton, Mc Graw Hill
- 2. MOS study guide for word, Excel, Powerpoint & Outlook Exams", Joan Lambert, Joyce Cox, PHI.
- 3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 4. Networking your computers and devices, Rusen, PHI
- 5. Trouble shooting, Maintaining & Repairing PCs", Bigelows, TMH