B.Tech II Year II Semester (R15) Supplementary Examinations December 2018

MATHEMATICS - IV

(Common to EEE, ECE and EIE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) Show that $\beta(m,n) = \beta(n,m)$.
 - Compute $\int_0^\infty e^{-x} x^3 dx$.
 - With usual notations prove that $J_n(-x) = (-1)^n J_n(x)$, where 'n' is a positive integer. (c)
 - (d) Write the Rodrigue's formula.
 - (e) Define analytic function.
 - Explain translation in bilinear transformation. (f)
 - (g) Define removable singularity.
 - Write Taylor's series expansion about the point z=a. (h)
 - Find the residue of $f(z) = \frac{2z+1}{z-2}$ (i)
 - Explain Laurent series expansion. (i)

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

[UNIT - I]

- (a) Prove that $\int_0^{\pi/2} \sqrt{\sin \theta} \ d\theta \ X \int_0^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} = \pi$. 2
 - (b) Compute $\int_0^\infty \frac{dx}{1+x^4}$ integrals by expressing in terms of gamma functions.

3 Solve $(x-1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$ subject to the conditions y(0) = 2 and y'(0) = -1 by the method of series solution.

[UNIT - II]

Compute the series solution of Bessel's differential equation $x^2y'' + xy' + (x^2 - n^2)y = 0$ leading to 4 $J_n(x)$.

OR

- Express $x^3 + 2x^2 4x + 5$ in terms of Legendre polynomials.
 - (b) If $x^3 + 2x^2 x + 1 = aP_0(x) + bP_1(x) + cP_2(x) + dP_3(x)$ compute the values of a, b, c, d.

UNIT – III

6 Show that $V = 3x^2y + 6xy - y^3$ is harmonic. Also find harmonic conjugate. Hence find f(z).

OR

7 Find the Bilinear transformation which maps z = 0, i, ∞ into w = 1, -i, -1. Also find the invariant points of this transformation.

UNIT - IV

Show that If C is the circle |z-a|=0 then $\int_c^{\infty}(z-a)^ndz=\begin{cases} 0, & \text{if } n\neq -1\\ 2\pi i, & \text{if } n=-1 \end{cases}$. 8

9 State and prove Cauchy's integral formula. Also derive its general form.

Determine the poles and the residue for the functions $\frac{z+4}{(z-1)^2(z-2)^3}$. 10

State and prove Cauchy Residue theorem. 11

B.Tech II Year II Semester (R15) Supplementary Examinations December 2017

MATHEMATICS - IV

(Common to EEE, ECE and EIE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

Answer the following: $(10 \times 02 = 20 \text{ Marks})$ 1

- (a) Find $\beta(2.5, 1.5)$.
 - (b) Compute $\Gamma(4.5)$.
 - (c) Compute $J_1(1)$
 - (d) $J_1(x) = \frac{1}{x} [xJ_1(x) J_2(x)]$ use recurrence relation.
 - Find the fixed points of the bilinear transformation w = (z 1)/(z + 1).
 - Since the function $f(z) = r^2 \cos 2\theta + i r^2 \sin p\theta$ is analytic, the real and imaginary parts satisfies Cauchy-Riemann equations. Hence p = 2.
 - Find Laurent series for $f(z) = \frac{1}{1-z^2}$ about $z_0 = 1$. Define removable singularity. (g)
 - (h)
 - Evaluate $\oint_{\mathcal{C}} e^{1/z^2} dz$ where C is |z| = 2 traversed counterclockwise. (i)
 - Evaluate $\oint_C \frac{dz}{z^2(z+4)} dz$ where C is |z| = 2. (j)

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- (a) Prove that $\beta(m, \frac{1}{2}) = 2^{2m-1}\beta(m, n)$.
 - (b) Prove that $\Gamma(m)\Gamma\left(m+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)$.

OR

- (a) Find the value of $\Gamma\left(-\frac{1}{2}\right)$.
 - (b) Prove that $\int_0^{\frac{\pi}{2}} \cos^n x$.

UNIT – II

Show that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x \sin \theta) d\theta$ where n being integer. 4

Find the value of $J_{\frac{1}{2}}(x)$. 5

UNIT - III

- Find the analytic function $f(z) = u(r, \theta) + i v(r, \theta)$, given that $v(r, \theta) = r^2 \cos 2\theta r \cos \theta + 2$. 6
- 7 (a) Obtain the bilinear transformations which maps the points $z = \infty$, i, 0 into the points w = 0, i, ∞ respectively.
 - Find the critical points of the transformation $w^2 = (z a)(z b)$. (b)

Evaluate $\int_C \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is the circle |z|=3, using complex integration formula. 8

If 0 < |z - 1| < 2 then express $(z) = \frac{z}{(z - 1)(z - 3)}$, in a series of positive and negative powers of (z - 1). 9

10

- (a) Evaluate $\int_C \frac{2z-3}{z^2+3z^2} dz$ where C is |z|=4, traversed counterclockwise use residue theorem. 11
 - (b) Evaluate $\oint_C \frac{dz}{z^3(z+4)} dz$ where C is |z+2|=3, traversed counterclockwise.

B.Tech II Year II Semester (R15) Supplementary Examinations December 2017

MATHEMATICS - IV

(Common to EEE, ECE and EIE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

Answer the following: $(10 \times 02 = 20 \text{ Marks})$ 1

- (a) Find $\beta(2.5, 1.5)$.
 - (b) Compute $\Gamma(4.5)$.
 - (c) Compute $J_1(1)$
 - (d) $J_1(x) = \frac{1}{x} [xJ_1(x) J_2(x)]$ use recurrence relation.
 - Find the fixed points of the bilinear transformation w = (z 1)/(z + 1).
 - Since the function $f(z) = r^2 \cos 2\theta + i r^2 \sin p\theta$ is analytic, the real and imaginary parts satisfies Cauchy-Riemann equations. Hence p = 2.
 - Find Laurent series for $f(z) = \frac{1}{1-z^2}$ about $z_0 = 1$. Define removable singularity. (g)
 - (h)
 - Evaluate $\oint_{\mathcal{C}} e^{1/z^2} dz$ where C is |z| = 2 traversed counterclockwise. (i)
 - Evaluate $\oint_C \frac{dz}{z^2(z+4)} dz$ where C is |z| = 2. (j)

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- (a) Prove that $\beta(m, \frac{1}{2}) = 2^{2m-1}\beta(m, n)$.
 - (b) Prove that $\Gamma(m)\Gamma\left(m+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)$.

OR

- (a) Find the value of $\Gamma\left(-\frac{1}{2}\right)$.
 - (b) Prove that $\int_0^{\frac{\pi}{2}} \cos^n x$.

UNIT – II

Show that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x \sin \theta) d\theta$ where n being integer. 4

Find the value of $J_{\frac{1}{2}}(x)$. 5

UNIT - III

- Find the analytic function $f(z) = u(r, \theta) + i v(r, \theta)$, given that $v(r, \theta) = r^2 \cos 2\theta r \cos \theta + 2$. 6
- 7 (a) Obtain the bilinear transformations which maps the points $z = \infty$, i, 0 into the points w = 0, i, ∞ respectively.
 - Find the critical points of the transformation $w^2 = (z a)(z b)$. (b)

Evaluate $\int_C \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is the circle |z|=3, using complex integration formula. 8

If 0 < |z - 1| < 2 then express $(z) = \frac{z}{(z - 1)(z - 3)}$, in a series of positive and negative powers of (z - 1). 9

10

- (a) Evaluate $\int_C \frac{2z-3}{z^2+3z^2} dz$ where C is |z|=4, traversed counterclockwise use residue theorem. 11
 - (b) Evaluate $\oint_C \frac{dz}{z^3(z+4)} dz$ where C is |z+2|=3, traversed counterclockwise.

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

MATHEMATICS - IV

(Common to EEE, ECE and EIE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
- (a) Compute $\Gamma(3.5)$.
 - (b) $\beta\left(\frac{9}{2},\frac{7}{2}\right)$.
 - (c) Compute $J_0(2)$
 - (d) $J_0(x) = \frac{9}{2}[J_2(x) J_0(x)]$ use recurrence relation.
 - (e) Find the critical points of the transformation $w^2 = (z a)(z b)$.
 - (f) Compute $V(r, \theta)$ when $f(z) = u(r, \theta) + iv(r, \theta)$. Here $u(r, \theta) = \left(r + \frac{1}{r}\right)\cos\theta$.
 - (g) Expand Taylor's series $\cos z$ about the point $z = \pi/2$.
 - (h) Write the formula of pole of order n at $z = z_0$.
 - (i) Evaluate $\oint_C e^{1/z^2} dz$ where C is |z| = 2 traversed counterclockwise.
 - (j) Evaluate $\oint_C \frac{dz}{z^2(z+4)} dz$ where C is |z| = 2.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

2 State and prove relation between Beta and Gamma function.

OR

- 3 (a) Find the value of $\Gamma\left(\frac{1}{2}\right)$.
 - (b) Derive $\int_0^{\frac{\pi}{2}} \sin^{n\theta} d\theta$.

UNIT – II

4 Show that $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \cos \phi) d\phi$.

OR

5 Find the value of $J_{\frac{1}{2}}(x)$.

UNIT – III

Find the analytical function of the complex potential for an electric field $w = \phi + i\Psi$, given that $\Psi = x^2 - y^2 + \frac{x}{x^2 + y^2}$. Use Milne Thomson method.

OR

- 7 (a) Find the bilinear transformation that maps the points $z_1 = -i$, $z_2 = 0$, $z_3 = i$ into the points $w_1 = 0$, $w_2 = -1$ and $w_3 = \infty$.
 - (b) Find the fixed points of the bilinear transformation w = (z 1)/(z + 1).

UNIT - IV

8 Evaluate $\int_C \frac{e^{2z}}{(z+1)^4} dz$ where C is the circle |z|=2, using complex integration formula.

ΩR

- 9 Represent the function $f(z) = \frac{4z+3}{z(z-3)(z-2)}$ as Laurent series:
 - (i) With in |z| = 1. (ii) In the annulus region |z| = 2 and |z| = 3. (iii) Exterior to |z| = 3.

UNIT – V

- Apply the calculus of residues to evaluate $\int_0^{2\pi} \frac{d\theta}{2-\sin\theta}$.
- 11 (a) Evaluate $\int_{|z|=\frac{1}{2}} \frac{dz}{(z-1)(z+2)^2} = 0$ using Residue theorem.
 - (b) Evaluate $\oint_C \frac{z^2}{z^2 iz + 2} dz$ where C is |z| = 3/2, traversed counterclockwise.