[image:]

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INFORMATION SECURITY
YEAR / SEM: IV / I

[image: D:\CNS\download.jpg]

[bookmark: _GoBack]

INFORMATION SECURITY
UNIT 1
Computer Security concepts, The OSI Security Architecture, Security attacks, Security services and Security mechanisms, A model for Network Security, Classical encryption techniques- symmetric cipher model, substitution ciphers, transposition ciphers, Steganography, Modern Block ciphers, Modern Stream ciphers. Modern Block Ciphers: Block ciphers principles, Data encryption standard (DES), Strength of DES, linear and differential cryptanalysis, block cipher modes of operations, AES, RC4
UNIT 2
 Introduction to Number theory : Integer Arithmetic, Modular Arithmetic, Matrices, Linear Congruence, Algebraic Structures, GF(2n) Fields, Primes, Primarily Testing, Factorization, Chinese remainder Theorem, Quadratic Congruence, Exponentiation and Logarithm. Public-key cryptography :Principles of public-key cryptography, RSA Algorithm, Diffie-Hellman Key Exchange, ELGamal cryptographic system, Elliptic Curve Arithmetic, Elliptic curve cryptography
UNIT 3
Cryptographic Hash functions: Applications of Cryptographic Hash functions, Requirements and security, Hash functions based on Cipher Block Chaining, Secure Hash Algorithm (SHA) Message Authentication Codes: Message authentication Requirements, Message authentication functions, Requirements for Message authentication codes, security of MACs, HMAC, MACs based on Block Ciphers, Authenticated Encryption Digital Signatures : RSA with SHA & DSS
UNIT 4
 Key Management and distribution: Symmetric key distribution using Symmetric Encryption, Symmetric key distribution using Asymmetric, Distribution of Public keys, X.509 Certificates, Public key Infrastructure. User Authentication: Remote user Authentication Principles, Remote user Authentication using Symmetric Encryption, Kerberos, Remote user Authentication using Asymmetric Encryption, Federated Identity Management Electronic mail security: Pretty Good Privacy (PGP), S/MIME

UNIT 5
Security at the Transport Layer(SSL and TLS) : SSL Architecture, Four Protocols, SSL Message Formats, Transport Layer Security, HTTPS, SSH Security at the Network layer (IPSec): Two modes, Two Security Protocols, Security Association, Security Policy, Internet Key Exchange.
System Security: Description of the system, users, Trust and Trusted Systems, Buffer Overflow and Malicious Software, Malicious Programs, worms, viruses, Intrusion Detection System(IDS), Firewalls

UNIT-I

 What is Security?
The quality or state of being secure—to be free from danger
· Computer Security-generic name for the collection of tools designed to protect data and to thwart hackers
· Network Security-measures to protect data during their transmission
· Internet Security-measures to protect data during their transmission over a collection of interconnected networks

Security Attack: any action that compromises the security of information owned by an organization
Generic types of attacks
· Passive attacks
· Active attacks

Passive Attacks:
A passive attack attempts to learn or make use of information from the system but does not affect system resources.
A passive attack, in computing security, is an attack characterized by the attacker listening in on communication. In such an attack, the intruder/hacker does not attempt to break into the system or otherwise change data
Goal: to obtain information that is being transmitted;
Passive attacks basically mean that the attacker is eavesdropping (listen secretly to or over-hear private conversation)
Two types of passive attacks are
· The release of message contents and
· Traffic analysis.

· Release of message contents: A telephone conversation, an electronic mail message, and a transferred file may contain sensitive or confidential information
[image:]
· Traffic analysis: By monitoring frequency and length of messages, even encrypted, nature of communication may be guessed

Traffic analysis is subtler (Figure b) Suppose that we had a way of masking the contents of messages or other information traffic so that opponents, even if they captured the message, could not extract the information from the message. The common technique for masking contents is encryption. If we had encryption protection in place, an opponent still might be able to observe the pattern of these messages. The opponent could determine the location and identity of communicating hosts and could observe the frequency and length of messages being exchanged. This information might be useful in guessing the nature of the communication that was taking place.

[image:]
· Passive attacks are very difficult to detect, because they do not involve any alteration of the data.
· Typically, the message traffic is sent and received in an apparently normal fashion, and neither the sender nor the receiver is aware that a third party has read the messages or observed the traffic pattern.
· However, it is feasible to prevent the success of these attacks, usually by means of encryption.

Active attack: An active attack attempts to alter system resources or affect their operation. Active attacks involve some modification of the data stream or the creation of a false stream.
Active attacks can be subdivided into four categories:
· masquerade,
· replay,
· modification of messages, and
· Denial of service.
·

[image:]

A masquerade takes place when one entity pretends to be a different entity (Figure: a). A masquerade attack usually includes one of the other forms of active attack.

For example, authentication sequences can be captured and replayed after a valid authentication sequence has taken place, thus enabling an authorized entity with few privileges to obtain extra privileges by impersonating an entity that has those privileges.

[image:]

Replay involves the passive capture of a data unit and its subsequent retransmission to produce an unauthorized effect.

[image:]

Modification of messages simply means that some portion of a legitimate message is altered, or that messages are delayed or reordered, to produce an unauthorized effect (Figure: c).

For example, a message meaning “Allow John Smith to read confidential file accounts” is modified to mean “Allow Fred Brown to read confidential file accounts.”

[image:]

The denial of service prevents or inhibits the normal use or management of communications facilities (Figure d). This attack may have a specific target;

For example, an entity may suppress all messages directed to a particular destination (e.g., the security audit service).

Another form of service denial is the disruption of an entire network—either by disabling the network or by overloading it with messages so as to degrade performance.

Authentication
The authentication service is concerned with assuring that a communication is authentic. In the case of a single message, such as a warning or alarm signal, the function of the authentication service is to assure the recipient that the message is from the source that it claims to be from. In the case of an ongoing interaction, such as the connection of a terminal to a host, two aspects are involved. First, at the time of connection initiation, the service assures that the two entities are
authentic (that is, that each is the entity that it claims to be). Second, the service must assure that the connection is not interfered with in such a way that a third party can masquerade as one of the two legitimate parties for the purposes of unauthorized transmission or reception. Two specific authentication services are defined in X.800:
• Peer entity authentication: Provides for the corroboration of the identity of a peer entity in an association. Two entities are considered peers if they implement the same protocol in different systems (e.g., two TCP modules in two communicating systems). Peer entity authentication is provided for use at the establishment of or during the data transfer phase of a connection. It attempts to provide confidence that an entity is not performing either a masquerade or an unauthorized replay of a previous connection.
• Data origin authentication: Provides for the corroboration of the source of a data unit. It does not provide protection against the duplication or modification of data units. This type of service supports applications like electronic mail, where there are no prior interactions between the communicating entities.

Access Control
In the context of network security, access control is the ability to limit and control the access to host systems and applications via communications links. To achieve this, each entity trying to gain access must first be identified, or authenticated, so that access rights can be tailored to the individual.

Data Confidentiality
Confidentiality is the protection of transmitted data from passive attacks. With respect to the content of a data transmission, several levels of protection can be identified. The broadest service protects all user data transmitted between two users over a period of time. For example, when a TCP connection is set up between two systems, this broad protection prevents the release of any user data transmitted over the TCP connection. Narrower forms of this service can also be defined, including the protection of a single message or even specific fields within a message. These refinements are less useful than the broad approach and may even be more complex and expensive to implement. The other aspect of confidentiality is the protection of traffic flow from analysis. This requires that an attacker not be able to observe the source and destination, frequency, length, or other characteristics of the traffic on a communications facility.

Data Integrity
As with confidentiality, integrity can apply to a stream of messages, a single message, or selected fields within a message. Again, the most useful and straightforward approach is total stream protection. A connection-oriented integrity service deals with a stream of messages and assures that messages are received as sent with no duplication, insertion, modification, reordering, or replays. The destruction of data is also covered under this service. Thus, the connection-oriented integrity service addresses both message stream modification and denial of service. On the other hand, a connectionless integrity service deals with individual messages without regard to any larger context and generally provides protection against message modification only.
We can make a distinction between service with and without recovery. Because the integrity service relates to active attacks, we are concerned with detection rather than prevention. If a violation of integrity is detected, then the service may simply report this violation, and some other portion of software or human intervention is required to recover from the violation. Alternatively, there are mechanisms available to recover from the loss of integrity of data, as we will review subsequently. The incorporation of automated recovery mechanisms is typically the more attractive alternative.

Nonrepudiation
Nonrepudiation prevents either sender or receiver from denying a transmitted message. Thus, when a message is sent, the receiver can prove that the alleged sender in fact sent the message. Similarly, when a message is received, the sender can prove that the alleged receiver in fact received the message.
Availability Service
Both X.800 and RFC 2828 define availability to be the property of a system or a system resource being accessible and usable upon demand by an authorized system entity, according to performance specifications for the system (i.e., a system is available if it provides services according to the system design whenever users request them). A variety of attacks can result in the loss of or reduction in availability. Some of these attacks are amenable to automated countermeasures, such as authentication and encryption, whereas others require some sort of physical action to prevent or recover from loss of availability of elements of a distributed system.
X.800 treats availability as a property to be associated with various security services. However, it makes sense to call out specifically an availability service. An availability service is one that protects a system to ensure its availability. This service addresses the security concerns raised by denial-of-service attacks. It depends on proper management and control of system resources and thus depends on access control service and other security services.

Secret Key Cryptography

Symmetric encryption is a form of cryptosystem in which encryption and decryption are performed using the same key. It is also known as conventional encryption. Symmetric encryption, also referred to as conventional encryption or single-key encryption.

◆ Symmetric encryption transforms plaintext into ciphertext using a secret key and an encryption algorithm. Using the same key and a decryption algorithm, the plaintext is recovered from the ciphertext.
◆ The two types of attack on an encryption algorithm are cryptanalysis, based on properties of the encryption algorithm, and brute-force, which involves trying all possible keys.
◆ Traditional (precomputer) symmetric ciphers use substitution and/or transposition techniques. Substitution techniques map plaintext elements (characters, bits) into ciphertext elements. Transposition techniques systematically transpose the positions of plaintext elements.
[image:]
[image:]
The Feistel Cipher:

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utilizing the concept of a product cipher, which is the execution of two or more simple ciphers in sequence in such a way that the final result or product is cryptographically stronger than any of the component ciphers.The essence of the approach is to develop a block cipher with a key length of k bits and a block length of n bits, allowing a total of 2k possible transformations, rather than the 2n! transformations available with the ideal block cipher.
In particular, Feistel proposed the use of a cipher that alternates substitutions and permutations, where these terms are defined as follows:
· Substitution: Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements.
· Permutation: A sequence of plaintext elements is replaced by a permutation of that sequence. That is, no elements are added or deleted or replaced in the sequence, rather the order in which the elements appear in the sequence is changed.

Feistel’s is a practical application of a proposal by Claude Shannon to develop a product cipher that alternates confusion and diffusion functions

FEISTEL CIPHER STRUCTURE The left-hand side of Figure 3.3 depicts the structure proposed by Feistel.The inputs to the encryption algorithm are a plaintext block of length 2w bits and a key . The plaintext block is divided into two halves, L0 and R0. The two halves of the data pass through n rounds of processing and then combine to produce the ciphertext block. Each round i has as inputs Li-1 and Ri-1 derived from the previous round, as well as a subkey Ki derived from the overall K. In general, the subkeys Ki are different from K and from each othe.

All rounds have the same structure. A substitution is performed on the left half of the data. This is done by applying a round function F to the right half of the data and then taking the exclusive-OR of the output of that function and the left half of the data. The round function has the same general structure for each round but is parameterized by the round subkey Ki.
[image:]

Feistel Cipher structures

Permutation is performed that consists of the interchange of the two halves of the data. This structure is a particular form of the substitution-permutation network (SPN) proposed by Shannon.
Te exact realization of a Feistel network depends on the choice of the following parameters and design features:
· Block size: Larger block sizes mean greater security (all other things being equal) but reduced encryption/decryption speed for a given algorithm. The greater security is achieved by greater diffusion. Traditionally, a block size of 64 bits has been considered a reasonable tradeoff and was nearly universal in block cipher design. However, the new AES uses a 128-bit block size.
· Key size: Larger key size means greater security but may decrease encryption/ decryption speed. The greater security is achieved by greater resistance to brute-force attacks and greater confusion. Key sizes of 64 bits or less are now widely considered to be inadequate, and 128 bits has become a common size.
· Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate security but that multiple rounds offer increasing security. A typical size is 16 rounds.
· Subkey generation algorithm: Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis.
· Round function F: Again, greater complexity generally means greater resistance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:
· Fast software encryption/decryption: In many cases, encryption is embedded in applications or utility functions in such a way as to preclude a hardware implementation. Accordingly, the speed of execution of the algorithm becomes a concern.
· Ease of analysis: Although we would like to make our algorithm as difficult as possible to cryptanalyze, there is great benefit in making the algorithm easy to analyze. That is, if the algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength. DES, for example, does not have an easily analyzed functionality.

	[image:]
	

Data Encryption Standard (DES):
· DES is a Symmetric-key algorithm for the encryption of electronic data.
· DES originated at IBM in 1977 & was adopted by the U.S Department of Defence. Now it is under the NIST (National Institute of Standard & Technology)
· Data Encryption Standard (DES) is a widely-used method of data encryption using a private (secret) key
· DES applies a 56-bit key to each 64-bit block of data. The process can run in several modes and involves 16 rounds or operations.
[image:]
Inner workings of DES:
DES (and most of the other major symmetric ciphers) is based on a cipher known as the Feistel block cipher. This was a block cipher developed by the IBM cryptography researcher Horst Feistel in the early 70’s. It consists of a number of rounds where each round contains bit-shuffling, non-linear substitutions (S-boxes) and exclusive OR operations. Most symmetric encryption schemes today are based on this structure (known as a feistel network).
Overall structure
DES (and most of the other major symmetric ciphers) is based on a cipher known as the Feistel block cipher.
Looking at the left-hand side of the figure, we can see that the processing of the plaintext proceeds in three phases.
· First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the bits to produce the permuted input.
· This is followed by a phase consisting of sixteen rounds of the same function, which involves both permutation and substitution functions. The output of the last (sixteenth) round consists of 64 bits that are a function of the input plaintext and the key. The left and right halves of the output are swapped to produce the preoutput.
· Finally, the preoutput is passed through a permutation that is the inverse of the initial permutation function, to produce the 64-bit cipher text. With the exception of the initial and final permutations, DES has the exact structure of a Feistel cipher,

The right-hand portion of below shows the way in which the 56-bit key is used. Initially, the key is passed through a permutation function. Then, for each of the sixteen rounds, a subkey (Ki) is produced by the combination of a left circular shift and a permutation. The permutation function is the same for each round, but a different subkey is produced because of the repeated shifts of the key bits.

[image:]

Initial Permutation: The initial permutation and its inverse are defined by tables, as shown in Tables 3.2a and 3.2b, respectively. The tables are to be interpreted as follows. The input to a table consists of 64 bits numbered from 1 to 64. The 64 entries in the permutation table contain a permutation of the numbers from 1 to 64. Each entry in the permutation table indicates the position of a numbered input bit in the output, which also consists of 64 bits.
[image:]
To see that these two permutation functions are indeed the inverse of each other, consider the following 64-bit input M:
[image:]
Where Mi is a binary digit. Then the permutation X = (IP(M)) is as follows:
[image:]

DETAILS OF SINGLE ROUND
Below figure shows the internal structure of a single round. Again, begin by focusing on the left-hand side of the diagram. The left and right halves of each 64-bit intermediate value are treated as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel cipher, the overall processing at each round can be summarized in the following formulas:
[image:]
[image:]

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by using a table that defines a permutation plus an expansion that involves duplication of 16 of the R bits (Table 3.2c).The resulting 48 bits are XORed with Ki . This 48-bit result passes through a substitution function that produces a 32-bit output, which is permuted as defined by Table 3.2d. The role of the S-boxes in the function F is illustrated in Figure 3.7.The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as output. These transformations are defined in Table 3.3, which is interpreted as follows : The first and last bits of the input to box Si form a 2-bit binary number to select one of four substitutions defined by the four rows in the table for . The middle four bits select one of the sixteen columns. The decimal value in the cell selected by the row and column is then converted to its 4-bit representation to produce the output.

For example, in S1, for input 011001, the row is 01 (row 1) and the column is 1100 (column 12).The value in row 1, column 12 is 9, so the output is 1001. Each row of an S-box defines a general reversible substitution. Figure 3.2 may be useful in understanding the mapping. The figure shows the substitution for row 0 of box S1. The operation of the S-boxes is worth further comment. Ignore for the moment the contribution of the key (Ki). If you examine the expansion table, you see that the 32 bits of input are split into groups of 4 bits and then become groups of 6 bits by taking the outer bits from the two adjacent groups. For example, if part of the input word is
... efgh ijkl mnop ...
This becomes ... defghi hijklm lmnopq ...

[image:]
The outer two bits of each group select one of four possible substitutions (one row of an S-box). Then a 4-bit output value is substituted for the particular 4-bit input (the middle four input bits). The 32-bit output from the eight S-boxes is then permuted, so that on the next round, the output from each S-box immediately affects as many others as possible.

Substitution Boxes S: Have eight S-boxes which map 6 to 4 bits. Each S-box is actually 4 little 4 bit boxes. Outer bits 1 & 6 (row bits) select one rows. inner bits 2-5 (col bits) are substituted. Result is 8 lots of 4 bits, or 32 bits. Row selection depends on both data & key

KEY GENERATION Returning to above all figures, we see that a 64-bit key is used as input to the algorithm.The bits of the key are numbered from 1 through 64; every eighth bit is ignored, as indicated by the lack of shading in Table 3.4a.The key is first subjected to a permutation governed by a table labeled Permuted Choice One (Table 3.4b)
The resulting 56-bit key is then treated as two 28-bit quantities, labelled C0 and D0. At each round, Ci-1 and Di-1 are separately subjected to a circular left shift or (rotation) of 1 or 2 bits, as governed by Table 3.4d.These shifted values serve as input to the next round. They also serve as input to the part labeled Permuted Choice Two (Table 3.4c), which produces a 48-bit output that serves as input to the Function F(Ri-1, Ki).

DES DECRYPTION:
Whatever process we following in the encryption that process is used for decryption also but the order of key is changed on input message (cipher text).
Reverse order of keys are K16, K15 ,……, K1.

Strengths of DES:

The DES is a symmetric key block cipher which takes 64bits cipher text and 56 bit key as an input and produce 64 bits cipher text as output.
The DES function is made up of P & S boxes
P-boxes transpose bits
S-boxes Substitution bits to generating the cipher text.

The use of 56bits keys: 56 bit key is used in encryption, there are 256 possible keys.
256=7.2×1016 keys, by this a brute force attack on such number of keys is impractical. A machine performing one DES encryption per microsecond would take more than a thousand years to break the cipher.

The nature of algorithm: Cryptanalyst can perform cryptanalysis by exploiting the characteristic of DES algorithm but no one has succeeded in finding out the weakness. This is possible because, in DES, they using 8-substitution tables or S-boxes in each iteration & one P-box transition for the every individual iteration.

Avalanche Effect:
· key desirable property of an encryption algorithm
· where a change of one input or key bit results in changing approx half output bits
· making attempts to “home-in” by guessing keys impossible
· DES exhibits strong avalanche
Timing Attacks
· attacks actual implementation of cipher
· use knowledge of consequences of implementation to derive knowledge of some/all subkey bits
· specifically use fact that calculations can take varying times depending on the value of the inputs to it
· particularly problematic on smartcards
Analytic Attacks
· now have several analytic attacks on DES
· these utilize some deep structure of the cipher
· by gathering information about encryptions
· can eventually recover some/all of the sub-key bits
· if necessary then exhaustively search for the rest
· generally these are statistical attacks
· include
· differential cryptanalysis
· linear cryptanalysis
· related key attacks

Triple DES:

Multiple encryption is a technique in which an encryption algorithm is used multiple times. In the first instance, plaintext is converted to ciphertext using the encryption algorithm. This ciphertext is then used as input and the algorithm is applied again. This process may be repeated through any number of stages.

Double DES:
The simplest form of multiple encryption has two encryption stages and two keys (Figure 4.la). Given a plaintext P and two encryption keys K, and K,, ciphertext C is generated as

[image:]
Decryption requires that the keys be applied in reverse order: [image:]

[image:]
For DES, this scheme apparently involves a key length of 56 * 2 = 112 bits, resulting in a dramatic increase in cryptographic strength. But we need to examine the algorithm more closely.
Reduction to A Single Stage: Suppose it were true for DES, for all 56-bit key values, that given any two keys K1 and K2, it would be possible to find a key K3 such that
[image:]
If this were the case, then double encryption, and indeed any number of stages of
multiple encryption with DES, would be useless because the result would be equivalent
to a single encryption with a single 56-bit key.

MEET-IN-THE-MIDDLE ATTACK Thus, the use of double DES results in a mapping that is not equivalent to a single DES encryption. But there is a way to attack this scheme, one that does not depend on any particular property of DES but that will work against any block encryption cipher.
meet-in-the-middle attack is based on the observation that, if we have
[image:]
Given a known pair, (P, C) the attack proceeds as follows. First, encrypt for all 256 possible values of K1. Store these results in a table and then sort the table by the values of .
Next, decrypt C using all 256 possible values of K2. As each decryption is produced, check the result against the table for a match. If a match occurs, then test the two resulting keys against a new known plaintext–ciphertext pair. If the two keys produce the correct ciphertext, accept them as the correct keys.
For any given plaintext P, there are 264 possible ciphertext values that could be produced by double DES. Double DES uses, in effect, a 112-bit key, so that there are 2112 possible keys. Therefore, on average, for a given plaintext , the number of different 112-bit keys that will produce a given ciphertext C is 2112/ 264=248 Thus, the foregoing procedure will produce about 248 false alarms on the first (P, C)

Triple DES with Two Keys:
An obvious counter to the meet-in-the-middle attack is to use three stages of encryption with three different keys. This raises the cost of the meet-in-the-middle attack to 2112 bits, which may be somewhat unwieldy.
As an alternative, Tuchman proposed a triple encryption method that uses only two keys [TUCH79]. The function follows an encrypt-decrypt-encrypt (EDE) sequence

[image:]
[image:]

Triple DES with Three Keys :
Although the attacks just described appear impractical, anyone using two-key 3DES may feel some concern. Thus, many researchers now feel that three-key 3DES is the preferred alternative (e.g., [KALI96a]).Three-key 3DES has an effective key length of 168 bits and is defined as
[image:]
Backward compatibility with DES is provided by putting K3 = K2 or K1 = K2
A number of Internet-based applications have adopted three-key 3DES, including PGP and S/MIME.
Electronic Codebook (ECB)
[image:]Message is broken into independent blocks which are encrypted
● Each block is encoded independently of the other blocks
Ci = DESK (Pi)

● Applications
– secure transmission of single values
– Databases (retrieval of single fields)

[image:]
● Weakness - encrypted message blocks are independent
● Strength – in some applications the independence of message blocks is very useful
– Databases
– Parallelizing encryption / decryption

Cipher Block Chaining Mode
[image:]● Message is broken into blocks
● “Linked” together during encryption
● each previous cipher block is chained with current plaintext block
● Initial Vector (IV) used to start process
● Applications: bulk data encryption, authentication

[image:]

● Each ciphertext block depends on all message blocks
● A change in a message block affects all ciphertext blocks after the change (as well as the original block)
● Need Initial Value (IV) known to sender & receiver
– however if IV is sent in the clear, an attacker can change bits of the first block, and change IV to compensate
– hence either IV must be a fixed value - or it must be sent encrypted in ECB mode before rest of message

[image:]Cipher Feedback Mode

● Message is treated as a stream of bits
● Added to the output of the block cipher
● Result is feed back for next stage (hence name)
● Standard allows any number of bit (1,8 or 64 or whatever) to be feed back
– denoted CFB-1, CFB-8, CFB-64 etc
● CFB-64 is used most often (most efficient)
● Applications: stream data encryption, authentication

[image:]

● Appropriate when data arrives in bits/bytes
● Most common stream mode
● Block cipher is used in encryption mode at both ends!
● Errors propagate for several blocks after the error (depending on s)
Output feedback mode:
● Message treated as a stream of bits
● Output of cipher is added to message
● Output is then fed back
● feedback is independent of message
● Applications: stream encryption over noisy channels
[image:]
[image:]
● Used when error feedback is a serious problem
● Superficially similar to CFB
– but feedback is from the output of cipher and is independent of message
● a variation of a Vernam cipher
– hence must never reuse the same sequence (key+IV)
● Sender and receiver must remain in sync, and some recovery method is needed to ensure this occurs
● Originally specified with s-bit feedback in the standards
● Subsequent research has shown that only OFB-64 should be used

COUNTER MODE
● A “new” mode, though proposed in '79
● Similar to OFB but encrypts counter value rather than any feedback value
● Must have a different key & counter value for every plaintext block (never reused)
● Applications: high-speed network encryptions

[image:]

[image:]

● Efficiency
– can do parallel encryptions
– in advance of need
– good for bursty high speed links
● Random access to encrypted data blocks
● Provable security (good as other modes)
– must ensure key/counter values are not reused

IDEA (International Data Encryption Algorithm):

· The International Data Encryption Algorithm (IDEA) is a symmetric block cipher developed by Xuejia Lai and James Massey of the Swiss Federal Institute of Technology.
· IDEA originally called “IPES” (Improved proposed Encryption Standard).
· IDEA is one of a number of conventional encryption algorithms that have been proposed in recent years to replace DES
· IDEA is one of the most successful of these proposals. For example, IDEA is included in PGP.

Details of IDEA algorithm:
[image:]
· IDEA operates with 64 bit plain text and cipher text blocks and is controlled b a 128 bit key.
· It avoids substitution boxes & lookup tables used in the block cipher.
· The algorithm structure has been chosen such that different key sub-blocks are used; the encryption process is identical to the decryption process.

Encryption process in IDEA:

· The design principle behind IDEA is mixing of arithmetical operations form different algebraic groups.
· The arithmetical operations are easily implemented both in hardware and software.
· The underling operations are
a. Exclusive-OR.
b. Addition of integers modulo 216
c. Multiplication modulo 210+1
· The algorithm structure has been chosen such that when different key sub-blocks are used, the encryption process is identical to the decryption process
· The IDEA algorithm consists of eight rounds followed by a final transformation function. The algorithm divides the input into four 16-bit subblocks. Each of the rounds takes four 16-bit subblocks as input and produces four 16-bit output blocks. The final transformation also produces four %-bit blocks, which are concatenated to form the 64-bit ciphertext.
· Each of the rounds also makes use of six 16-bit subkeys, whereas the final transformation uses four subkeys, for a total of 52 subkeys
[image:]
Key Expansion (Encryption):

The 128-bit key is expanded into 52 16-bit keys: K1, K2,K52. (in diagram we represented these keys with Z1 to z52)	
Step 1: Keys K1….K8 are generated by taking 8 chunks of 16-bits each
Step 2: Keys K9…K16 are generated by starting from the 25th bit, wrapping around the first 25 bits at the end, and taking 16-bit chunks.
Step 3: Wrap around 25 more bits to the end, and generate keys K17…K24. This process is repeated until all keys K1…K52 are generated

Details of a Single Round:

64 bit data is divided into 4 16bit data blocks. These 4 blocks are processed through 8 rounds and transformed by the above arithmetical operations among each other and with 6 16 bit subkeys.
[image:]
[image:]
Blow fish:
· Blow fish is a symmetric block cipher developed by bruce schner in year 1993.
· Blow fish is designed to have following characteristics
· Speed: Blowfish encrypts data on 32 bit microprocessor at a rate of 18 clock cycles per byte.
· Compact: it can run in less than 5k memory.
· Simple: very easy to implements.
· Variably secure: the key length is variable and can be as long as 448 bits. This allows a trade off between higher speed and higher security.
· Blowfish is a feistal type model.

BLOWFISH ALGORITHM:
· Blowfish is feistel type model, iterating a simple encryption function 16 times.
· Blowfish block size is 64 & key can be upto 448 bits.
· Blow fish encryption 64bits blocks of plaintext into 64 bit block of cipher.
· Blow fish make use of a key that ranges from 32bits to 448 bits (one to fourteen 32 bit keys).
· The keys are stored in a k-array (one to 14 32 bits)
K1,K2----Kj where 1≤ j ≤14.

· That key is used to generate 18 “32 bit” subkeys & four “8*32”bits S-boxes.
· The subkeys are stored in the p-array
 	P1,P2,-------P18
There are four s-boxes(each s-box size is 8*32 bits) each with 256 32bit entries.
S1,0, S1,1,-------------------S1,255
S2,0, S2,1,-------------------S2,255
S3,0, S3,1,-------------------S3,255
S4,0, S4,1,-------------------S4,255
The steps in generating the P-array & S-boxes as follows.

Step1 initialize first the P-array and then 4 s-boxes in order using the bits of fractional part of the constant п.
Step 2 Perform a bitwise xor of the P-array & k-array, reusing words from the k-array as needed.
Example P1=P1[image:]K1, P1=P2[image:]K2, -------- P14=P14[image:]K14,
		P15=P15[image:]K1, P16=P1[image:]K2, P17=P1[image:]K3, P18=P1[image:]K4,
Step 3 Encrypt the 64 bit block of all zeros using the current P & S-arrays, Replace P1&P2 with the output of the encryption.
[image:]
Step 4 Encrypt the output of step 3 using the current P- and S-arrays and replace P3, and P4, with the resulting ciphertext.
[image:]
Step 5Continue this process to update all elements of P and then, in order, all elements of S, using at each step the output of the continuously changing Blowfish algorithm.
[image:]

The update process can be summarized as follows
[image:]
Where Ep,s[Y] is the ciphertext produced by encrypting Y using Blowfish with the arrays S and P.

· A total of 521 executions of the Blowfish encryption algorithm are required to produce the final S- and P-arrays.
· Accordingly, Blowfish is not suitable for applications in which the secret key changes frequently. Further, for rapid execution, the P- and S-arrays can be stored rather than rederived from the key each time the algorithm is used.
· This requires over 4 kilobytes of memory. Thus, Blowfish is not appropriate for applications with limited memory, such as smart cards.

Encryption and Decryption
Blowfish uses two primitive operations:
· Addition: Addition of words, denoted by +, is performed modulo 232.
· Bitwise exclusive-OR: This operation is denoted by [image:]

[image:]
[image:]

In the above figure the encryption operation. The plaintext is divided into two 32-bit halves LE, and RE,. We use the variables LE, and RE, to refer to the left and right half of the data after round i has completed. The algorithm can be defined by the following pseudocode:
[image:]
The function F is shown in below Figure. The 32-bit input to F is divided into 4 bytes. If we label those bytes a, b, c, and d, then the function can be defined as follows:
[image:]
[image:]
Blowfish Decryption:
Blowfish decryption occurs in the same algorithmic direction as encryption. Rather than the reverse. The algorithm can be defined as follows:
[image:]

Advantages or features of blowfish:

· A brute-force attack is even more difficult than may be apparent from the key length because of the time-consuming subkey-generation process. A total of 522 executions of the encryption algorithm are required to test a single key.
· The function F gives Blowfish the best possible avalanche affect for a Feistel network: In round i, every bit of Li-1, affects every bit of Ri-1. In addition . every subkey bit is affected by every key bit. and therefore F has a perfect avalanche effect between the key (P,) and the right half of the data (R,) after every round.
· Every bit of the input to F is only used as input to one S-box. In contrast. In DES, many bits are used as inputs to two S-boxes. which strengthens the algorithm considerably against differential attacks. Schneier felt that this added complexity was not necessary with key-dependent S-boxes.
· Unlike in CAST, the function F in Blowfish is not round dependent. Schneier felt that such dependency did not add any cryptographic merit, given that the P-array substitution is already round dependent.

CAST-128
· In cryptography, CAST-128 (alternatively CAST5) is a symmetric-key block cipher.
· CAST-128, also known as CAST5
· This block cipher used in a number of products, notably as the default cipher in some versions of GPG (GNU Privacy Guard) and PGP (Pretty Good Privacy) systems.
· It has also been approved for Canadian government use by the Communications Security Establishment.
· CAST-128 algorithm was created in 1996 by Carlisle Adams and Stafford Tavares. The CAST name is based on the initials of its inventors
· CAST-128 is a 12- or 16-round Feistel network with a 64-bit block size and a key size of between 40 to 128 bits (but only in 8-bit increments). The full 16 rounds are used when the key size is longer than 80 bits.
CAST-128 Encryption
CAST-128 uses four primitive operations:
· Addition and subtraction: Addition of words, denoted by +, is performed modulo 232. The inverse operation, denoted by -, is subtraction modulo 232.
· Bitwise exclusive-OR: This operation is denoted by [image:]
· Left circular rotation: The cyclic rotation of word x left by y bits is denoted by x <<< y.
The CAST-128 encryption algorithm can be defined by the following pseudocode. The plaintext is divided into two 32-bit halves L0, and R0. We use the variables Li and Ri, to refer to the left and right half of the data after round i has completed. The ciphertext is formed by swapping the output of the sixteenth round; that is, the ciphertext is the concatenation of R16 and L16.

[image:]
Decryption is the same as encryption, with the keys employed in reverse order. Figure 4.14 depicts the details of a single round. The F function includes the use of four 8 x 32 S-boxes, the left circular rotation function, and four functions that vary depending on the round number; we label these functions f1, f2,, f3,, and f4,. We use I to refer to the intermediate 32-bit value after the left circular rotation function, and the labels Ia, Ib, Ic, and Id to refer to the 4 bytes of I, where Ia is the most significant and Id is the least significant. With these conventions, F is defined as follows:
[image:]

[image:]
FEATURES OF CAST-128:
There are several notable features of CAST worthy of comment.,
CAST makes use of fixed S-boxes. The designers felt that fixed S-boxes with good nonlinearity characteristics are preferable to random S-boxes as might be obtained if the S-boxes were key dependent. The subkey-generation process used in CAST-128 is different from that employed in other symmetric encryption algorithms described in the literature.
The
CAST designers were concerned to make subkeys as resistant to known cryptanalytic attacks as possible and felt that the use of highly nonlinear S-boxes provided this strength. We have seen other approaches with the same goal.
For example. Blowfish uses the encryption algorithm itself to generate the subkeys.

The function F is designed to have good confusion, diffusion. and avalanche properties. It uses S-box substitutions, mod 2 addition and subtraction, exclusive- OR operations, and key-dependent rotation.
The strength of the F function is based primarily on the strength of the S-boxes, but the further use of these arithmetic. Boolean, and rotate operators adds to its strength. Finally, F is not uniform from round to round, as was described. This dependence of F on round number may provide.

ADVANCED ENCRYPTION STANDARD

· The Advanced Encryption Standard (AES) was published by the National Institute of Standards and Technology (NIST) in 2001.
· AES is a block cipher intended to replace DES for commercial applications.
· It uses a 128-bit block size and a key size of 128, 192, or 256 bits.
· AES does not use a Feistel structure. Instead, each full round consists of four separate functions: byte substitution, permutation, arithmetic operations over a finite field, and XOR with a key.
AES parameters:
	Key size(words/bytes/bits)
	4/16/128
	6/24/192
	8/32/256

	Plaintext block Size (words/bytes/bits)
	4/16/128
	4/16/128
	4/16/128

	Number of rounds
	10
	12
	14

	Round Key size (words/bytes/bits)
	4/16/128
	4/16/128
	4/16/128

	Expanded key size (words/bytes)
	44/176
	52/208
	60/240

Inner Workings of a Round
The algorithm begins with an Add round key stage followed by 9 rounds of four stages and a tenth round of three stages. This applies for both encryption and decryption with the exception that each stage of a round the decryption algorithm is the inverse of it’s counterpart in the encryption algorithm. The four stages are as follows:
1. Substitute bytes
2. Shift rows
3. Mix Columns
4. Add Round Key
The tenth round simply leaves out the Mix Columns stage. The first nine rounds of the decryption algorithm consist of the following:
1. Inverse Shift rows
2. Inverse Substitute bytes
3. Inverse Add Round Key
4. Inverse Mix Columns

Again, the tenth round simply leaves out the Inverse Mix Columns stage. Each of these stages will now be considered in more detail.
[image:]
[image:]

Substitute Bytes
This stage (known as SubBytes) is simply a table lookup using a 16×16 matrix of byte values called an s-box. This matrix consists of all the possible combinations of an 8 bit sequence (28 = 16 × 16 = 256). However, the s-box is not just a random permutation of these values and there is a well defined method for creating the s-box tables. The designers of Rijndael showed how this was done unlike the s-boxes in DES for which no rationale was given. We will not be too concerned here how the s-boxes are made up and can simply take them as table lookups.
[image:]
Figure 7.2: Data structures in the AES algorithm.

Again the matrix that gets operated upon throughout the encryption is known as state. We will be concerned with how this matrix is effected in each round. For this particular round each byte is mapped into a new byte in the following way: the leftmost nibble of the byte is used to specify a particular row of the s-box and the rightmost nibble specifies a column. For example, the byte {95} (curly brackets represent hex values in FIPS PUB 197) selects row 9 column 5 which turns out to contain the value {2A}.
This is then used to update the state matrix. Figure 7.3 depicts this idea.

[image:]
The Inverse substitute byte transformation (known as InvSubBytes) makes use of an inverse s-box. In this case what is desired is to select the value {2A} and get the value {95}. Table 7.4 shows the two s-boxes and it can be verified that this is in fact the case.

The s-box is designed to be resistant to known cryptanalytic attacks. Specifically, the Rijndael developers sought a design that has a low correlation between input bits and output bits, and the property that the output cannot be described as a simple mathematical function of the input. In addition, the s-box has no fixed points (s-box(a) = a) and no opposite fixed points (s-box(a) = [image:]) where [image:] is the bitwise compliment of a. The s-box must be invertible if decryption is to be possible (Is-box[s-box(a)]= a) however it should not be its self inverse i.e. s-box(a) ≠ Is-box(a)

SUBSTITUTION TECHNIQUES

A substitution technique is one in which the letters of plaintext are replaced by other letters or by numbers or symbols. If the plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with cipher text bit patterns.

(i)Caesar cipher (or) shift cipher

The earliest known use of a substitution cipher and the simplest was by Julius Caesar. The Caesar cipher involves replacing each letter of the alphabet with the letter standing 3 places further down the alphabet.

e.g., Plain text : pay more mone

Cipher text: SDB PRUH PRQHB

Note that the alphabet is wrapped around, so that letter following „z‟ is „a‟.

For each plaintext letter p, substitute the cipher text letter c such that C =

E(p) = (p+3) mod 26
A shift may be any amount, so that general Caesar algorithm is C = E (p) = (p+k) mod 26

Where k takes on a value in the range 1 to 25. The decryption algorithm is simply P = D(C) = (C-k) mod 26
(ii)Playfair cipher

The best known multiple letter encryption cipher is the playfair, which treats digrams in the plaintext as single units and translates these units into cipher text digrams. The playfair algorithm is based on the use of 5x5 matrix of letters constructed using a keyword. Let the keyword be „monarchy‟. The matrix is constructed by filling in the letters of the keyword (minus duplicates) from left to right and from top to bottom, and then filling in the remainder of the matrix with the remaining letters in alphabetical order.

The letter „i‟ and „j‟ count as one letter. Plaintext is encrypted two letters at a time according to the following rules:

1. Repeating plaintext letters that would fall in the same pair are separated with a filler letter such as „x‟.

2. Plaintext letters that fall in the same row of the matrix are each replaced by the letter to the right, with the first element of the row following the last.

3. Plaintext letters that fall in the same column are replaced by the letter beneath, with the top element of the column following the last.

4. Otherwise, each plaintext letter is replaced by the letter that lies in its own row and the column occupied by the other plaintext letter.

	M
	O
	N
	A
	R

	
	
	
	
	

	C
	H
	Y
	B
	D

	
	
	
	
	

	E
	F
	G
	I/J
	K

	
	
	
	
	

	L
	P
	Q
	S
	T

	
	
	
	
	

	U
	V
	W
	X
	Z

	
	
	
	
	

Plaintext = meet me at the school house

Splitting two letters as a unit => me et me at th es ch ox ol ho us ex Corresponding cipher text => CL KL CL RS PD IL HY AV MP HF XL IU
Strength of playfair cipher

3. Playfair cipher is a great advance over simple mono alphabetic ciphers.

4. Since there are 26 letters, 26x26 = 676 diagrams are possible, so identification of individual digram is more difficult.

5. Frequency analysis is much more difficult.

(iii)Polyalphabetic ciphers

Another way to improve on the simple monoalphabetic technique is to use different monoalphabetic substitutions as one proceeds through the plaintext message. The general name for this approach is polyalphabetic cipher. All the techniques have the following features in common.

1. A set of related monoalphabetic substitution rules are used

2. A key determines which particular rule is chosen for a given transformation.
(iv)Vigenere cipher

In this scheme, the set of related monoalphabetic substitution rules consisting of 26 caesar ciphers with shifts of 0 through 25. Each cipher is denoted by a key letter. e.g.,

Caesar cipher with a shift of 3 is denoted by the key value 'd‟ (since a=0, b=1, c=2 and so on).

To aid in understanding the scheme, a matrix known as vigenere tableau is constructed
Each of the 26 ciphers is laid out horizontally, with the key letter for each cipher to its left. A normal alphabet for the plaintext runs across the top. The process of encryption is simple: Given a key letter X and a plaintext letter y, the cipher text is at the intersection of the row labeled x and the column labeled y; in this case, the ciphertext is V.
To encrypt a message, a key is needed that is as long as the message. Usually, the key is a repeating keyword.

	e.g., key
	= d e c e p t i v e d e c e p t i v e d e c e p t i v e

	PT
	= w e a r e d i s c o v e r e d s a v e y o u r s e l f

	CT
	= ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Decryption is equally simple. The key letter again identifies the row. The position of the cipher text letter in that row determines the column, and the plaintext letter is at the top of that column.
Strength of Vigenere cipher

1. There are multiple ciphertext letters for each plaintext letter

2. Letter frequency inforamiton is obscured.

One Time Pad Cipher

It is an unbreakable cryptosystem. It represents the message as a sequence of 0s and 1s. this can be accomplished by writing all numbers in binary, for example, or by using ASCII. The key is a random sequence of 0‟s and 1‟s of same length as the message.

Once a key is used, it is discarded and never used again. The system can be expressed as follows:

Ci = Pi [image:]Ki

Ci - ith binary digit of cipher text	Pi - ith binary digit of plaintext

Ki - ith binary digit of key [image:] – exclusive OR opearaiton

Thus the cipher text is generated by performing the bitwise XOR of the plaintext and the key. Decryption uses the same key. Because of the properties of XOR, decryption simply involves the same bitwise operation:
Pi = Ci [image:]Ki

	e.g., plaintext
	= 0 0 1 0 1 0 0 1

	Key
	= 1 0 1 0 1 1 0 0

ciphertext = 1 0 0 0 0 1 0 1

Advantage:

3. Encryption method is completely unbreakable for a ciphertext only attack.

Disadvantages

1. It requires a very long key which is expensive to produce and expensive to transmit.

2. Once a key is used, it is dangerous to reuse it for a second message; any knowledge on the first message would give knowledge of the second.
TRANSPOSITION TECHNIQUES

All the techniques examined so far involve the substitution of a cipher text symbol for a plaintext symbol. A very different kind of mapping is achieved by performing some sort of permutation on the plaintext letters. This technique is referred to as a transposition cipher.

Rail fence is simplest of such cipher, in which the plaintext is written down as a sequence of diagonals and then read off as a sequence of rows.

Plaintext	= meet at the school house

To encipher this message with a rail fence of depth 2, we write the message as follows:

m	e a	t	e	c	o	l	o	s

· t t h s H o h u e

The encrypted message is

MEATECOLOSETTHSHOHUE

Row Transposition Ciphers-A more complex scheme is to write the message in a rectangle, row by row, and read the message off, column by column, but permute the order of the columns. The order of columns then becomes the key of the algorithm. e.g., plaintext = meet at the school house

	Key = 4
	3
	1
	2
	5
	6
	7

	PT = m
	e
	e
	t
	a
	t
	t

	h
	e
	s
	c
	h
	o
	o

	l
	h
	o
	u
	s
	e
	

CT = ESOTCUEEHMHLAHSTOETO

A pure transposition cipher is easily recognized because it has the same letter frequencies as the original plaintext. The transposition cipher can be made significantly more secure by performing more than one stage of transposition. The result is more complex permutation that is not easily reconstructed.
Question Bank
1. Answer the following:
a. What is Non-repudiation
b. Distinguish between stream and block ciphers
c. List out the problems of one time pad
d. Define Diffusion and Replay attack
e. What is session key
f. Name any two security standards
g. What is masquerading
h. Differentiate passive attack from active attack example
i. Distinguish between Dos and DDoS
2. Using play fair cipher algorithm encrypt the message FACTIONALISM using key
MONARCHY and explain
3. Explain the ceaser cipher and Mono alphabetic cipher
4. A).what is the difference between a mono alphabetic and a poly alphabetic cipher
B). what you mean by cryptanalysis
5. Explain about substitution and transposition techniques with two examples for each
6. A).What is security mechanism? Briefly describe the relation between security services
and mechanisms.
B).What are the various components of symmetric cipher model? Explain or
Briefly describe the requirements for secure use of conventional encryption
7. A).What is security service? Describe various security services
B).Briefly describe TCP session hijacking
8. A).What are format string vulnerabilities? How they can be fixed and exploited?
B).What is cryptography? Briefly describe the requirements for secure use of
conventional encryption
9. Briefly describe a model for network security with the help of a neat diagram
10. A).What is encryption? Briefly describe the types of attacks on encrypted messages
B).What are the key principles of Security
C).Write a note on spoofing
11. Briefly explain about the SQL injection.
12. Briefly describe TCP session hijacking.
13. Explain the terms related to Buffer overflow: A). Stack dumping B).Execute Payload.
14. Explain the model of conventional crypto system
15. A) Explain rail fence transposition technique
B) Explain the symmetric key encryption model

UNIT-II

INTRODUCTION TO NUMBER THEORY

Primality Testing and RSA

· The first stage of key-generation for RSA involves finding two large primes p, q

· Because of the size of numbers used, must find primes by trial and error

· Modern primality tests utilize properties of primes eg:

1. an-1 = 1 mod n where GCD(a,n)=1

1. all primes numbers 'n' will satisfy this equation

· some composite numbers will also satisfy the equation, and are called pseudo-primes.

Most modern tests guess at a prime number 'n', then take a large number (eg 100) of numbers 'a', and apply this test to each. If it fails the number is composite, otherwise it is is probably prime.

There are a number of stronger tests which will accept fewer composites as prime than the above test. eg:
[image:]

RSA Implementation in Practice

1. Software implementations

1. generally perform at 1-10 bits/second on block sizes of 256-512 bits

· two main types of implementations:

· - on micros as part of a key exchange mechanism in a hybrid scheme

· - on larger machines as components of a secure mail system
3. Harware Implementations

· generally perform 100-10000 bits/sec on blocks sizes of 256-512 bits

1. all known implementations are large bit length conventional ALU units
Euler Totient Function [[phi]](n)

2. if consider arithmetic modulo n, then a reduced set of residues is a subset of the complete set of residues modulo n which are relatively prime to n
o eg for n=10,

o the complete set of residues is {0,1,2,3,4,5,6,7,8,9} o the reduced set of residues is {1,3,7,9}

3. the number of elements in the reduced set of residues is called the Euler Totient function [[phi]](n)

4. there is no single formula for [[phi]](n) but for various cases count how many elements are excluded:

p (p prime)	[[phi]](p) =p-1

pr (p prime)	[[phi]](p) =pr-1(p-1)

p.q (p,q prime)	[[phi]](p.q) =(p-1)(q-1)

several important results based on [[phi]](n) are:

2. Theorem (Euler's Generalization)

· let gcd(a,n)=1 then
ii. a[[phi]](n) mod n = 1

2. Fermat's Theorem

ii. let p be a prime and gcd(a,p)=1 then

iii. ap-1 mod p = 1

3. Algorithms to find Inverses a-1 mod n

4. search 1,...,n-1 until an a-1 is found with a.a-1 mod n

5. if [[phi]](n) is known, then from Euler's Generalization
a-1 = a[[phi]](n)-1 mod n

6. otherwise use Extended Euclid's algorithm for inverse
Computing with Polynomials in GF(qn)

have seen arithmetic modulo a prime number GF(p)

also can do arithmetic modulo q over polynomials of degree n, which also form a Galois

Field GF(qn)

its elements are polynomials of degree (n-1) or lower

ii. a(x)=an-1xn-1+an-2xn-2+...+a1x+a0

have residues for polynomials just as for integers

p(x)=q(x)d(x)+r(x)

and this is unique if deg[r(x)]<deg[d(x)]

if r(x)=0, then d(x) divides p(x), or is a factor of p(x)

addition in GF(qn) just involves summing equivalent terms in the polynomial modulo q (XOR if q=2)
a(x)+b(x)=(an-1+bn-1)xn-1+...+(a1+b1)x+(a0+b0)

Multiplication with Polynomials in GF(qn)

multiplication in GF(qn) involves

multiplying the two polynomials together (cf longhand multiplication; here use

shifts & XORs if q=2)

then finding the residue modulo a given irreducible polynomial of degree n

an irreducible polynomial d(x) is a 'prime' polynomial, it has no polynomial divisors other than itself and 1

modulo reduction of p(x) consists of finding some r(x) st: p(x)=q(x)d(x)+r(x)

nb. in GF(2n) with d(x)=x3+x+1 can do simply by replacing x3 with x+1

eg in GF(23) there are 8 elements:

0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1

with irreducible polynomial d(x)=x3+x+1* arithmetic in this field can be summarised as:

can adapt GCD, Inverse, and CRT algorithms for GF(qn)

[[phi]](p(x)) = 2n-1 since every poly except 0 is relatively prime to p(x)

arithmetic in GF(qn) can be much faster than integer arithmetic, especially if the irreducible polynomial is carefully chosen

eg a fast implementation of GF(2127) exists
has both advantages and disadvantages for cryptography, calculations are faster, as are methods for breaking

RSA and the Chinese Remainder Theorem

a significant improvement in decryption speed for RSA can be obtained by using the Chinese Remainder theorem to work modulo p and q respectively
o since p,q are only half the size of R=p.q and thus the arithmetic is much faster

CRT is used in RSA by creating two equations from the decryption calculation:

M = Cd mod R

as follows:

M1 = M mod p = (C mod p)d mod (p-1)

M2 = M mod q = (C mod q)d mod (q-1)

then the pair of equations

M = M1 mod p	M = M2 mod q

has a unique solution by the CRT, given by:

M = [((M2 +q - M1)u mod q] p + M1

where

p.u mod q = 1
FINITE FIELDS

Groups, Rings and Field:

Group: A set of elements that is closed with respect to some operation.

Closed-> The result of the operation is also in the set

The operation obeys:
ii. Obeys associative law: (a.b).c = a.(b.c)

iii. Has identity e: e.a = a.e = a

iv. Has inverses a-1: a.a-1 = e

Abelian Group: The operation is commutative

a.b = b.a

Example: Z8, + modular addition, identity =0
Cyclic Group

Exponentiation: Repeated application of operator

1. example: a3 = a.a.a

2. Cyclic Group: Every element is a power of some fixed element, i.e., b = ak for some a and every b in group a is said to be a generator of the group

3. Example: {1, 2, 4, 8} with mod 12 multiplication, the generator is 2.

4. 20=1, 21=2, 22=4, 23=8, 24=4, 25=8

Ring:

5. A group with two operations: addition and multiplication

6. The group is abelian with respect to addition: a+b=b+a

7. Multiplication and additions are both associative: a+(b+c)=(a+b)+c

a.(b.c)=(a.b).c

8. Multiplication distributes over addition, a.(b+c)=a.b+a.c

9. Commutative Ring: Multiplication is commutative, i.e., a.b = b.a

10. Integral Domain: Multiplication operation has an identity and no zero divisors

Field:

An integral domain in which each element has a multiplicative inverse.
[image:]

Modular Arithmetic

modular arithmetic is 'clock arithmetic'

a congruence a = b mod n says when divided by n that a and b have the same remainder o 100 = 34 mod 11

o usually have 0<=b<=n-1

o -12mod7 = -5mod7 = 2mod7 = 9mod7 o b is called the residue of a mod n

can do arithmetic with integers modulo n with all results between 0 and n

Addition

a+b mod n

Subtraction

a-b mod n = a+(-b) mod n

Multiplication

a.b mod n

derived from repeated addition

can get a.b=0 where neither a,b=0 o eg 2.5 mod 10

Division

a/b mod n

is multiplication by inverse of b: a/b = a.b-1 mod n

if n is prime b-1 mod n exists s.t b.b-1 = 1 mod n

ii. eg 2.3=1 mod 5 hence 4/2=4.3=2 mod 5

integers modulo n with addition and multiplication form a commutative ring with the laws of

Associativity : (a+b)+c = a+(b+c) mod n

Commutativity : a+b = b+a mod n

Distributivity : (a+b).c = (a.c)+(b.c) mod n
also can chose whether to do an operation and then reduce modulo n, or reduce then do the operation, since reduction is a homomorphism from the ring of integers to the ring of integers modulo n

o a+/-b mod n = [a mod n +/- b mod n] mod n o (the above laws also hold for multiplication)

if n is constrained to be a prime number p then this forms a Galois Field modulo p denoted GF(p) and all the normal laws associated with integer arithmetic work

Greatest Common Divisor

the greatest common divisor (a,b) of a and b is the largest number that divides evenly into both a and b

Euclid's Algorithm is used to find the Greatest Common Divisor (GCD) of two numbers a and n, a<n

o use fact if a and b have divisor d so does a-b, a-2b GCD (a,n) is given by:

let g0=n g1=a

gi+1 = gi-1 mod gi when gi=0 then (a,n) = gi-1

eg find (56,98) g0=98 g1=56

g2 = 98 mod 56 = 42

g3 = 56 mod 42 = 14

g4 = 42 mod 14 = 0 hence (56,98)=14
Finite Fields or Galois Fields

Finite Field: A field with finite number of elements

Also known as Galois Field

The number of elements is always a power of a prime number. Hence, denoted as GF(pn)

GF(p) is the set of integers {0,1, …, p-1} with arithmetic operations modulo prime p

Can do addition, subtraction, multiplication, and division without leaving the field GF(p)

GF(2) = Mod 2 arithmetic GF(8) = Mod 8 arithmetic
There is no GF(6) since 6 is not a power of a prime

Polynomial Arithmetic

f(x) = anxn + an-1xn-1 + …+ a1x + a0 = Σ aixi

1. Ordinary polynomial arithmetic:

ii. Add, subtract, multiply, divide polynomials,

iii. Find remainders, quotient.

iv. Some polynomials have no factors and are prime.

2. Polynomial arithmetic with mod p coefficients

3. Polynomial arithmetic with mod p coefficients and mod m(x) operations

Polynomial Arithmetic with Mod 2 Coefficients

4. All coefficients are 0 or 1, e.g.,

let f(x) = x3 + x2 and g(x) = x2 + x + 1

f(x) + g(x) = x3 + x + 1

f(x) x g(x) = x5 + x2

5. Polynomial Division: f(x) = q(x) g(x) + r(x)

6. can interpret r(x) as being a remainder

7. r(x) = f(x) mod g(x)

8. if no remainder, say g(x) divides f(x)

9. if g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial

10. Arithmetic modulo an irreducible polynomial forms a finite field

11. Can use Euclid‟s algorithm to find gcd and inverses.

Public Key Cryptography

Introduction to Public key Cryptography:

· Public key cryptography also called as asymmetric cryptography.
· It was invented by whitfield Diffie and Martin Hellman in 1976. Sometimes this cryptography also called as Diffie-Helman Encryption.
· Public key algorithms are based on mathematical problems which admit no efficient solution that are inherent in certain integer factorization, discrete logarithm and Elliptic curve relations.
Public key Cryptosystem Principles:
· The concept of public key cryptography in invented for two most difficult problems of Symmetric key encryption.
· The Key Exchange Problem
· The Trust Problem
The Key Exchange Problem: The key exchange problem arises from the fact that communicating parties must somehow share a secret key before any secure communication can be initiated, and both parties must then ensure that the key remains secret. Of course, direct key exchange is not always feasible due to risk, inconvenience, and cost factors.

The Trust Problem: Ensuring the integrity of received data and verifying the identity of the source of that data can be very important. Means in the symmetric key cryptography system, receiver doesn’t know whether the message is coming for particular sender.
· This public key cryptosystem uses two keys as pair for encryption of plain text and Decryption of cipher text.
· These two keys are names as “Public key” and “Private key”. The private key is kept secret where as public key is distributed widely.
· A message or text data which is encrypted with the public key can be decrypted only with the corresponding private-key
· This two key system very useful in the areas of confidentiality (secure) and authentication

	A public-key encryption scheme has six ingredients

	1
	Plaintext
	This is the readable message or data that is fed into the algorithm as input.

	2
	Encryption algorithm
	The encryption algorithm performs various transformations on the plaintext.

	3
	Public key
	This is a pair of keys that have been selected so that if one is used for encryption, the other is used for decryption. The exact transformations performed by the algorithm depend on the public or private key that is provided as input

	4
	Private key
	

	5
	Ciphertext
	This is the scrambled message produced as output. It depends on the plaintext and the key. For a given message, two different keys will produce two different ciphertexts.

	6
	Decryption algorithm
	This algorithm accepts the ciphertext and the matching key and produces the original plaintext.

Public key cryptography for providing confidentiality (secrecy)
[image:]
The essential steps are the following.
1. Each user generates a pair of keys to be used for the encryption and decryption of messages.
2. Each user places one of the two keys in a public register or other accessible file. This is the public key.The companion key is kept private.As Figure 9.1a suggests, each user maintains a collection of public keys obtained from others.
3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using Alice’s public key.
4. When Alice receives the message, she decrypts it using her private key. No other recipient can decrypt the message because only Alice knows Alice’s private key.

[image:]
There is some source A that produces a message in plaintext X = [X1, X2, . . . ,XM].
The M elements of X are letters in some finite alphabet. The message is intended for destination B.
B generates a related pair of keys: a public key, PUb, and a private key, PRb.

PRb is known only to B, whereas PUb is publicly available and therefore accessible by A.
With the message X and the encryption key PUb as input, A forms the ciphertext Y = [Y1, Y2, . . . , YN]:
[image:]
The intended receiver, in possession of the matching private key, is able to invert the transformation:
[image:]
Public key cryptography for proving Authentication:
[image:]

[image:]

The above diagrams show the use of public-key encryption to provide authentication:
[image:]
· In this case,A prepares a message to B and encrypts it using A’s private key before transmitting it. B can decrypt the message using A’s public key. Because the message was encrypted using A’s private key, only A could have prepared the message. Therefore, the entire encrypted message serves as a digital signature.

· It is impossible to alter the message without access to A’s private key, so the message is authenticated both in terms of source and in terms of data integrity.

Public key cryptography for both authentication and confidentiality (Secrecy)

[image:]

It is, however, possible to provide both the authentication function and confidentiality by a double use of the public-key scheme (above figure):
[image:]
In this case, we begin as before by encrypting a message, using the sender’s private key. This provides the digital signature. Next, we encrypt again, using the receiver’s public key. The final ciphertext can be decrypted only by the intended receiver, who alone has the matching private key. Thus, confidentiality is provided.

Applications for Public-Key Cryptosystems
Public-key systems are characterized by the use of a cryptographic algorithm with two keys, one held private and one available publicly. Depending on the application, the sender uses either the sender’s private key or the receiver’s public key, or both, to perform some type of cryptographic
function. the use of public-key cryptosystems into three categories
• Encryption /decryption: The sender encrypts a message with the recipient’s public key.
• Digital signature: The sender “signs” a message with its private key. Signing is achieved by a cryptographic algorithm applied to the message or to a small block of data that is a function of the message.
• Key exchange: Two sides cooperate to exchange a session key. Several different approaches are possible, involving the private key(s) of one or both parties.

Applications for Public-Key Cryptosystems
	Algorithm
	Encryption/Decryption
	Digital Signature
	Key Exchange

	RSA
	Yes
	Yes
	Yes

	Elliptic Curve
	Yes
	Yes
	Yes

	Diffie-Hellman
	No
	No
	Yes

	DSS
	No
	Yes
	No

Public-Key Cryptanalysis
As with symmetric encryption, a public-key encryption scheme is vulnerable to a brute-force attack. The countermeasure is the same: Use large keys. However, there is a tradeoff to be considered. Public-key systems depend on the use of some sort of invertible mathematical function. The complexity of calculating these functions may not scale linearly with the number of bits in the key but grow more rapidly than that. Thus, the key size must be large enough to make brute-force attack impractical but small enough for practical encryption and decryption. In practice, the key sizes that have been proposed do make brute-force attack impractical but result in encryption/decryption speeds that are too slow for general-purpose use. Instead, as was mentioned earlier, public-key encryption is currently confined to key management and signature applications.

RSA

· It is the most common public key algorithm.
· This RSA name is get from its inventors first letter (Rivest (R), Shamir (S) and Adleman (A)) in the year 1977.
· The RSA scheme is a block cipher in which the plaintext & ciphertext are integers between 0 and n-1 for some ‘n’.
· A typical size for ‘n’ is 1024 bits or 309 decimal digits. That is, n is less than 21024

Description of the Algorithm:
· RSA algorithm uses an expression with exponentials.
· In RSA plaintext is encrypted in blocks, with each block having a binary value less than some number n. that is, the block size must be less than or equal to log2(n)
· RSA uses two exponents ‘e’ and ‘d’ where epublic and dprivate.
· Encryption and decryption are of following form, for some PlainText ‘M’ and CipherText block ‘C’
[image:]
 (
M=C
d
 mod = (M
e
 mod n)
 d

mon
 n
=(
M
e
)
d
 mod n= M
ed
 mod n
)

Both sender and receiver must know the value of n.
The sender knows the value of ‘e’ & only the reviver knows the value of ‘d’ thus this is a public key encryption algorithm with a
Public key PU={e, n}
Private key PR={d, n}

Requirements:
The RSA algorithm to be satisfactory for public key encryption, the following requirements must be met:
1. It is possible to find values of e, d n such that “ Med mod n =M ” for all M<n
2. It is relatively easy to calculate “ Me mod n “ and “ Cd mod n “for M<n
3. It is infeasible to determine “d” given ‘e’ & ‘n’. The “ Med mod n =M ” relationship holds if ‘e’ & ‘d’ are multiplicative inverses modulo Ø(n).
Ø(n) Euler Totient function
For p,q primes where p*q and p≠q.
Ø(n)= Ø(pq)=(p-1)(q-1)
Then the relation between ‘e’ & ‘d’ can be expressed as “ [image:]“ 	
this is equivalent to saying
[image:]
That is ‘e’ and ‘d’ are multiplicative inverses mod Ø(n).
Note: according to the rules of modular arithmetic, this is true only if ‘d’ (and ‘e’) is relatively prime to Ø(n).
Equivalently gcd(Ø(n), d)=1.

Steps of RSA algorithm:
Step 1Select 2 prime numbers p & q
Step 2Calculate n=pq
Step 3Calculate Ø(n)=(p-1)(q-1)
Step 4 Select or find integer e (public key) which is relatively prime to Ø(n).
ie., e with gcd (Ø(n), e)=1 where 1<e< Ø(n).
Step 5 Calculate “d” (private key) by using following condition. [image:] d< Ø(n).
 Step 6 Perform encryption by using [image:]

Step 7 perform Decryption by using [image:]

Example:
1. Select two prime numbers, p = 17 and q = 11.
2. Calculate n = pq = 17 × 11 = 187.
3. Calculate Ø(n) = (p - 1)(q - 1) = 16 × 10 = 160.
4. Select e such that e is relatively prime to Ø(n) = 160 and less than Ø (n); we choose e = 7.
5. Determine d such that de ≡1 (mod 160) and d < 160.The correct value is d = 23, because 23 * 7 = 161 = (1 × 160) + 1; d can be calculated using the extended Euclid’s algorithm

The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}.
The example shows the use of these keys for a plaintext input of M= 88. For encryption,
we need to calculate C = 887 mod 187. Exploiting the properties of modular arithmetic, we can do this as follows.

[image:]
[image:]

[image:]

The Security of RSA
Four possible approaches to attacking the RSA algorithm are
• Brute force: This involves trying all possible private keys.
• Mathematical attacks: There are several approaches, all equivalent in effort to factoring the product of two primes.
• Timing attacks: These depend on the running time of the decryption algorithm.
• Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm.
Diffie-Hellman Key Exchange:
· Diffie-Hellman key exchange is the first published public key algorithm
· This Diffie-Hellman key exchange protocol is also known as exponential key agreement. And it is based on mathematical principles.
· The purpose of the algorithm is to enable two users to exchange a key securely that can then be used for subsequent encryption of messages.
· This algorithm itself is limited to exchange of the keys.
· This algorithm depends for its effectiveness on the difficulty of computing discrete logarithms.
· The discrete logarithms are defined in this algorithm in the way of define a primitive root of a prime number.
· Primitive root: we define a primitive root of a prime number P as one whose power generate all the integers form 1 to P-1 that is if ‘a’ is a primitive root of the prime number P, then the numbers
[image:] are distinct and consist of the integers form 1 through P-1 in some permutation.
For any integer ‘b’ and ‘a’, here ‘a’ is a primitive root of prime number P, then
b≡ ai mod P 0 ≤ i ≤ (P-1)
The exponent i is refer as discrete logarithm or index of b for the base a, mod P.
	The value denoted as ind a,p(b)

Algorithm for Diffie-Hellman Key Exchange:

Step 1 two public known numbers q, α
		q Prime number
		α primitive root of q and α< q.
Step 2 if A & B users wish to exchange a key
a) User A select a random integer XA<q and computes [image:]
b) User B independently select a random integer XB <q and computes [image:]
c) Each side keeps the X value private and Makes the Y value available publicly to the outer side.
Step 3 User A Computes the key as [image:]
	 User B Computes the key as [image:]
Step 4 two calculation produce identical results
[image:]
[image:] (We know that[image:])
[image:]
[image:]
[image:]
[image:] (We know that[image:])
The result is that the two sides have exchanged a secret key.

[image:]

Example:
[image:]

MAN-in the Middle Attack (MITM)
[image:]
Definition: A man in the middle attack is a form of eavesdropping where communication between two users is monitored and modified by an unauthorized party.

Generally the attacker actively eavesdrops by intercepting (stoping) a public key message exchange.
The Diffie- Hellman key exchange is insecure against a “Man in the middle attack”.
Suppose user ‘A’ & ‘B’ wish to exchange keys, and D is the adversary (opponent). The attack proceeds as follows.
1. ‘D’ prepares for the attack by generating two random private keys XD1 & XD2 and then computing the corresponding public keys YD1 and YD2.
2. ‘A’ transmits ‘YA’ to ‘B’
3. ‘D’ intercepts YA and transmits YD1 to ‘B’. and D also calculates [image:]
4. ‘B’ receives YD1 & calculate [image:]
5. ‘B’ transmits ‘YB’ to ‘A”
6. ‘D’ intercepts ‘YB’ and transmits YD2 to ‘A’ and ‘D’ calculate K1[image:]
7. A receives YD2 and calculates [image:]
At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth share secret key K1 and Alice and Darth share secret key K2. All future communication between Bob and Alice is compromised in the following way.

[image:]
The key exchange protocol is vulnerable to such an attack because it does not authenticate the participants. This vulnerability can be overcome with the use of digital signatures and public-key certificates.
Elliptic Curve Cryptography
· Definition: Elliptic curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. These are analogy of existing public key cryptosystem in which modular arithmetic is replaced by operations defined over elliptic curve.
· The use of elliptic curves in cryptography was suggested independently by Neal Koblitz and Victor S. Miller in 1985.
· Elliptic curve cryptography (ECC) is one of the most powerful but least understood types of cryptography in wide use today. An increasing number of websites make extensive use of ECC to secure everything from customers' HTTPS connections to how they pass data between data centers.

An elliptic curve is defined by an equation in two variables with coefficients. For
cryptography, the variables and coefficients are restricted to elements in a finite field,
which results in the definition of a finite abelian group.

Elliptic Curves over Real Numbers
Elliptic curves are not ellipses. They are so named because they are described by cubic equations,
[image:] is similar to equation of calculating circumference of an ellipse.
Where
a,b,c,d and e real numbers.
X and Y aretaken on values in the real numbers.

For utilization of this in cryptography
[image:] EQ1, is sufficient.
Such equations are said to be cubic, or of degree 3, because the highest exponent they contain is a 3. Also included in the definition of an elliptic curve is a single element denoted O and called the point at infinity or the zero point. To plot such a curve, we need to compute
[image:] For given values of and, the plot consists of positive and negative values of for
each value of . Thus, each curve is symmetric about y = 0.

Two families of elliptic curves are used in cryptographic applications:
· Prime curves over Zp [it is Best for software application]
· Binary curves over GF(2m) [it is Best for software application]

Prime curves over Zp
In Prime curves over Zp , p referred to as a modulus.
we use a cubic equation in which the variables and coefficients all take on values in the set of integers from 0 through p - 1 and in which calculations are performed modulo p.
from EQ1, in this case coefficients and variables limited to Zp.
[image:] eq2

Now consider the set Ep(a, b) consisting of all pairs of integers (x, y) that satisfy
Equation eq2 together with a point at infinity .The coefficients a and b and the variables x and y are all elements of Zp.

[image:]

For example, let p = 23 and consider the elliptic curve y2 = x3 + x + 1 In this case, a = b = 1
For the set E23(1, 1), we are only interested in the nonnegative integers in the quadrant from (0, 0) through (p - 1, p - 1) that satisfy the equation mod p.

Elliptic Curves over GF(2m):
A finite field GF(2m) consists of 2m elements, together with addition & multiplication operations that can be defined over polynomials.

For elliptic Curves over GF(2m), we use a cubic equation in which the variables and coefficients all take on values in GF(2m), for some number m.
By this, the form of cubic equation appropriate for cryptographic application.
The form is [image:] EQ3.

To form a cryptographic system using elliptic curves, we need to find a “hard problem” corresponding to factoring the product of two primes or taking the discrete logarithm.

Consider the equation [image:]
It is relatively easy to calculate Q given k and P
But it is relatively hard to determine given Q and P.
This is called the discrete logarithm problem for elliptic curves.

ECC Diffie-Hellman Key Exchange:

ECC can do key exchange, that is analogous to Diffie Hellman.
Key exchange using elliptic curves can be done in the following manner.
First pick a large integer q , which is either a prime number P or an integer of the form 2m and elliptic curve parameters a & b for equation [image:] or [image:].
This define elliptic group of point Eq(a,b).
Pick a base point G=(x1,y1) in Ep(a,b) whose order is a very large value n.
The order n of a point G on an elliptic curve is the smallest +ve integer n such that nG=0.Eq(a,b)

[image:]
[image:]

Elliptic Curve Encryption/Decryption:

[image:]
[image:]

QUESTION BANK
1. Explain public key encryption scheme
2. Perform encryption and decryption using RSA algorithm for p=3,q=11,e=7 and M=5.
3. Explain public key cryptosystem for secrecy and authentication.
4. Explain Deffie-Hellman key exchange.
5. What are the principal elements of a public key cryptosystem? Explain.
6. In a public key system using RSA, you intercept the cipher text C=10 sent to a user whose public key is e=5, n= 35. What is the plain text M?
7. Explain RSA algorithm in detail.
8. Perform encryption and decryption using RSA algorithm for p=5,q=11,e=3 and M=9.

9. Describe in general terms an efficient procedure for picking a prime number
10. What requirements must a public key cryptosystems fulfill to be a secure algorithm?
11. Explain RSA algorithm in detail with an example.
12. Compare and contrast different secure hash functions.

UNIT-III

MESSAGE AUTHENTICATION REQUIREMENTS:

In the context of communications across a network, the following attacks can be identified.
1. Disclosure: Release of message contents to any person or process not possessing the appropriate cryptographic key.
2. Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-oriented application, the frequency and duration of connections could be determined. In either a connection-oriented or connectionless environment, the number and length of messages between parties could be determined.
3. Masquerade: Insertion of messages into the network from a fraudulent source. This includes the creation of messages by an opponent that are purported to come from an authorized entity. Also included are fraudulent acknowledgments of message receipt or nonreceipt by someone other than the message recipient.
4. Content modification: Changes to the contents of a message, including insertion, deletion, transposition, and modification.
5. Sequence modification: Any modification to a sequence of messages between parties, including insertion, deletion, and reordering.
6. Timing modification: Delay or replay of messages. In a connection-oriented application, an entire session or sequence of messages could be a replay of some previous valid session, or individual messages in the sequence could be delayed or replayed. In a connectionless application, an individual message (e.g., datagram) could be delayed or replayed.
7. Source repudiation: Denial of transmission of message by source.
8. Destination repudiation: Denial of receipt of message by destination.
Measures to deal with the first two attacks are in the realm of message confidentiality and are dealt with in Part One. Measures to deal with items (3) through (6) in the foregoing list are generally regarded as message authentication. Mechanisms for dealing specifically with item (7) come under the heading of digital signatures. Generally, a digital signature technique will also counter some or all of the attacks listed under items (3) through (6). Dealing with item (8) may require a combination of the use of digital signatures and a protocol designed to counter this attack.

MESSAGE AUTHENTICATION FUNCTIONS:

Any message authentication or digital signature mechanism has two levels of functionality. At the lower level, there must be some sort of function that produces an authenticator: a value to be used to authenticate a message. This lower-level function is then used as a primitive in a higher-level authentication protocol that enables a receiver to verify the authenticity of a message.
Authentication Functions that may be used for produce an authenticator. These may be grouped into three classes.

• Message encryption: The ciphertext of the entire message serves as its authenticator
• Message authentication code (MAC): A function of the message and a secret key that produces a fixed-length value that serves as the authenticator
• Hash function: A function that maps a message of any length into a fixed length hash value, which serves as the authenticator.
Message Encryption
Message encryption by itself can provide a measure of authentication. The analysis differs for symmetric and public-key encryption schemes.
[image:]

SYMMETRIC ENCRYPTION Consider the straightforward use of symmetric encryption (Figure 12.1a). A message M transmitted from source A to destination B is encrypted using a secret key K shared by A and B. If no other party knows the key, then confidentiality is provided: No other party can recover the plaintext of the message.

B is assured that the message was generated by A. Why? The message must have come from A, because A is the only other party that possesses K and therefore the only other party with the information necessary to construct ciphertext that can be decrypted with K. if M is recovered, B knows that none of the bits of M have been altered, because an opponent that does not know K would not know how to alter bits in the ciphertext to produce the desired changes in the plaintext. So we may say that symmetric encryption provides authentication as well as confidentiality

Given a decryption function D and a secret key K, the destination will accept any input X and produce output Y=D(X, K). If X is the ciphertext of a legitimate message produced by the corresponding encryption function, then Y is some plaintext message. Otherwise, will likely be a meaningless sequence of bits. There may need to be some automated means of determining at B whether is legitimate plaintext and therefore must have come from A.

If incoming ciphertext decrypts to intelligible plaintext. If the plaintext is, say, a binary object file or digitized X-rays, determination of properly formed and therefore authentic plaintext may be difficult.

Thus, an opponent could achieve a certain level of disruption simply by issuing messages with random content purporting to come from a legitimate user.

One solution to this problem is to force the plaintext to have some structure that is easily recognized but that cannot be replicated without recourse to the encryption function.We could, for example, append an error-detecting code, also known as a frame check sequence (FCS) or checksum, to each message before encryption, as illustrated in Figure 12.2a.

[image:]

Internal error control
A prepares a plaintext message and then provides this as input to a function F that produces an FCS. The FCS is appended to M and the entire block is then encrypted. At the destination, B decrypts the incoming block and treats the results as a message with an appended FCS.

B applies the same function F to attempt to reproduce the FCS. If the calculated FCS is equal to the incoming FCS, then the message is considered authentic. It is unlikely that any random sequence of bits would exhibit the desired relationship. The sequence illustrated in Figure 12.2a is referred as internal error control.

External error control
Figure 12.2 b, with internal error control, authentication is provided because an opponent would have difficulty generating ciphertext that, when decrypted, would have valid error control bits. If instead the FCS is the outer code, an opponent can construct messages with valid error-control codes. Although the opponent cannot know what the decrypted plaintext will be, he or she can still hope to create confusion and disrupt operations.

MESSAGE AUTHENTICATION CODE (MAC):

Definition: In cryptography, a message authentication Code (MAC) is a short piece of information used to authenticate a message and to provide integrity and authenticity (valid) assurances (free form doubt) on the message.

Integrity assurance detects accidental and internal message changes.
Authenticity assurances affirm (swear) the messages origin

· MAC, also known as a cryptographic checksum.
· It is an alternative authentication technique involves the use of a secret key to generate a small fixed size block of data, that is appended to the message.
· A MAC or cryptographic checksum, is generated by a function C of the form
 (
MAC=C (K, M)
)

MInput Message
CMAC function
K Shared Secret Key of Communication parties (A & B).
MAC Message Authentication Code.

When A has a message to send to B, The “message + MAC” are transmitted to the intended (aimed) recipient (B).
The recipient perform the same calculation on the received message, using the same secret key, to generate a new MAC.
The received MAC is compared to the calculated MAC.
NOTE: A MAC function is similar to encryption; one difference is that the MAC algorithm need not be reversible, as it must for decryption.
MAC function is a many-to-one, potentially many messages have same MAC. That is, if message M is 100 bit message, and 10 bit MAC then there are 2100 messages and 210 MAC are available.
There four 2100/210 = 290 different message, 5 bit key used then 25=32 different mapping form the set of messages to the set of MAC values.

In general n-bit MAC is used, then there are 2n possible MAC’s
Npossible messages with N>>2n With K-bits key, there 2K possible keys.

[image:]

Situations in which a message authentication code is used

1. There are a number of applications in which the same message is broadcast to a number of destinations.
Examples are notification to users that the network is now unavailable or an alarm signal in a military control center. It is cheaper and more reliable to have only one destination responsible for monitoring authenticity. Thus, the message must be broadcast in plaintext with an associated message authentication code. The responsible system has the secret key and performs authentication. If a violation occurs, the other destination systems are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and cannot afford the time to decrypt all incoming messages. Authentication is carried out on a selective basis, messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The computer program can be executed without having to decrypt it every time, which would be wasteful of processor resources. However, if a message authentication code were attached to the program, it could be checked whenever assurance was required of the integrity of the program.

4. For some applications, it may not be of concern to keep messages secret, but it is important to authenticate messages.
An example is the Simple Network Management Protocol Version 3 (SNMPv3), which separates the functions of confidentiality and authentication. For this application, it is usually important for a managed system to authenticate incoming SNMP messages, particularly if the message contains a command to change parameters at the managed system. On the other hand, it may not be necessary to conceal the SNMP traffic.

5. Separation of authentication and confidentiality functions affords architectural flexibility. For example, it may be desired to perform authentication at the application level but to provide confidentiality at a lower level, such as the transport layer.

6. A user may wish to prolong the period of protection beyond the time of reception and yet allow processing of message contents. With message encryption, the protection is lost when the message is decrypted, so the message is protected against fraudulent modifications only in transit but not within the target system.

MAC does not provide a digital signature, because both sender and receiver share the same key.

HASH FUNCTION:
It is a one of the authentication function; it accepts a variable size message M as input and produce a fixed size output.
A hash value ‘h’ is generated by a function H of the form
 (
h=H (M)
)

M variable length message
H(M) fixed length hash value.

The hash code is also referred as Message Digest (MD) or hash value.
The main difference between HashFunction and MAC is , a hash code does not use a key but is a function only of the input message.
The hash value is appended to the message at the source at a time when the message is assumed or known to be correct.
The receiver authenticates that message by re-computing the hash value.
[image:]
a. The message plus concatenated hash code is encrypted using symmetric encryption. Because only A and B share the secret key, the message must have come from A and has not been altered. The hash code provides the structure or redundancy required to achieve authentication. Because encryption is applied to the entire message plus hash code, confidentiality is also provided.
b. Only the hash code is encrypted, using symmetric encryption. This reduces the processing burden for those applications that do not require confidentiality
c. It is possible to use a hash function but no encryption for message authentication. The technique assumes that the two communicating parties share a common secret value S.A computes the hash value over the concatenation of M and S and appends the resulting hash value to M. Because B possesses, it can recomputed the hash value to verify. Because the secret value itself is not sent, an opponent cannot modify an intercepted message and cannot generate a false message.
d. Confidentiality can be added to the approach of method (c) by encrypting the entire message plus the hash code.

When confidentiality is not required, method (b) has an advantage over methods (a) and (d), which encrypts the entire message, in that less computation is required. Nevertheless, there has been growing interest in techniques that avoid encryption (Figure 11.2c). Because
· Encryption software is relatively slow. Even though the amount of data to be encrypted per message is small, there may be a steady stream of messages into and out of a system.

· Encryption hardware costs are not negligible. Low-cost chip implementations of DES are available, but the cost adds up if all nodes in a network must have this capability.

· Encryption hardware is optimized toward large data sizes. For small blocks of data, a high proportion of the time is spent in initialization/invocation overhead.

· Encryption algorithms may be covered by patents, and there is a cost associated with licensing their use.

Requirements for a hash function:
The purpose of a hash function is to produce a “fingerprint” of a file, message or other block of data. To be useful for message authentication, a hash function H must have the following properties:
1. H van be applied to a block of data of any size
2. H produces a fixed length output.
3. H(x) is relatively easy to compute for any given x, making both hardware and software implementations practical.
4. One-way property:- for any given value h, it is computationally infeasible to find x such that H(x)=h. this sometimes referred to in the literature as the one way property.
5. Weak collision resistance:- for any given block x. it is computationally infeasible to find y≠x with H(y)=H(x). this is referred as weak collision resistance.
6. Strong collision resistance:- it is computationally infeasible to find any pair (X,Y) such that H(x)=H(y). this referred as strong collision resistance.
[image:]

Simple Hash functions:
All hash functions operate using the following general principles. The input (message, file, etc.) is viewed as a sequence of -bit blocks. The input is processed one block at a time in an iterative fashion to produce an -bit hash function. One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every block.
This can be expressed as
[image:]
Birthday attacks:
Birthday attacks are a class of brute force techniques used in an attempt to solve a class of cryptographic hash function problem. These methods takes advantage of functions which, when supplied with a random input, return one of k equally likely values.

Suppose that a 64 bit hash code is use, if an encryption hash code C is transmitted with the corresponding unencrypted message M then an opponent would need to find an M1 such that H(M1)=H(M) to substitute another message and fool the receiver. On average, the opponent would have to try about 263 messages to find one that matches the hash code of the intercepted message.

Hash Algorithms :
1. Message Digest:MD5
2. Secure Hash Algorithm: SHA-1 (from MD4)
3. RIPEMD-160
4. HMAC

MD5 Message Digest Algorithm:
Introduction:-
The MD% message digest algorithm was developed by “Ron Rivest” at MIT (Massachusetts Institute of Technology 1861). It was developed to avoid brute force & crypt-analytic attacks. MD5 was the most widely used secure hash algorithm.

MD5 logic:
		Input:-This algorithm takes as input a message of arbitrary length.	
Output:- produce a 128 bit message digest.
The input is processed in 512 bit blocks.
[image:]

Algorithm processing Steps:
Step1: Append Padding Bits
Step 2: Append Length
Step 3: Initialize MD Buffer
Step 4: Process Message in 512 bit (16-Word) Blocks
Step 5: Output

Step-1: Appending Padding Bits. The original message is "padded" (extended) so that its length (in bits) is congruent to 448, modulo 512. The padding rules are:
· The original message is always padded with one bit "1" first.
· Then zero or more bits "0" are padded to bring the length of the message up to 64 bits fewer than a multiple of 512.
Step-2: Appending Length. 64 bits are appended to the end of the padded message to indicate the length of the original message in bytes. The rules of appending length are:
· The length of the original message in bytes is converted to its binary format of 64 bits. If overflow happens, only the low-order 64 bits are used.
· Break the 64-bit length into 2 words (32 bits each).
· The low-order word is appended first and followed by the high-order word.
Step-3: Initializing MD Buffer. A 128 bit buffer is used to hold intermediate and final results of the ash function. The buffer can be represented as four 32 bit registers (A, B, C, D). these registers are initialize to the following 32 bit integers (hexadecimal values)
· Word A is initialized to: 0x67452301.
· Word B is initialized to: 0xEFCDAB89.
· Word C is initialized to: 0x98BADCFE.
· Word D is initialized to: 0x10325476.
Step-4: Processing Message in 512-bit Blocks. This is the main step of MD 5 algorithm, which loops through the padded and appended message in blocks of 512 bits each. For each input block, 4 rounds of operations are performed with 16 operations in each round. The four rounds have a similar structure, but each uses a different primitive logical function, referred to as F,G,H and I in the specification.
[image:]
Step-5: output: After all L 512 bit blocks have been processed, the output form the Lth stage is the 128 bit message digest.
[image:]
MD5 Compression Function:
The logic of each of the four rounds of the processing of one 512 bits block. Each round consists of a sequence of 16 steps operating on the buffer ABCD. Each step is of the form
[image:]
[image:]

SHA- Secure Hash Algorithm:
Introduction:
The Secure Hash Algorithm is a family of cryptographic hash functions developed by the NIST (National Institute of Standards & Technology).
SHA is based on the MD4 algorithm and its design closely models MD5.
SHA-1 is specified in RFC 3174.

Purpose: Authentication, not encryption.

SHA-1 logic:
	The algorithm takes a message with maximum of length of less than 264 bits.
	Produce output is 160 bits message digest.
	The input is processed 512 bits block.

Processed Steps:
Algorithm processing Steps:
Step1: Append Padding Bits
Step 2: Append Length
Step 3: Initialize MD Buffer
Step 4: Process Message in 512 bit (16-Word) Blocks
Step 5: Output

Step-1: Appending Padding Bits. The original message is "padded" (extended) so that its length (in bits) is congruent to 448, modulo 512. The padding rules are:
· The original message is always padded with one bit "1" first.
· Then zero or more bits "0" are padded to bring the length of the message up to 64 bits fewer than a multiple of 512.

Step-2: append length: a block of 64 bits is appended to the message. This block is treated as unsigned 64 bit integers (most significant byte first) and contains the length of the original message.

Step-3: Initialize MD buffer: 160 bit buffer is used to hold intermediate and final results of the hash function. This buffer can be represented as five 32 bit registers (A, B,C,D,E). the register are initialized to the following 32 bit integers

· Word A is initialized to: 0x67452301.
· Word B is initialized to: 0xEFCDAB89.
· Word C is initialized to: 0x98BADCFE.
· Word D is initialized to: 0x10325476.
· Word E is initialized to: 0xC3D2E1F0
Step 4: Process Message in 512 bits: this algorithm consist 4 rounds of 20 steps each. Four rounds have similar structures, but each uses a different primitive logical function, we refer it as f1, f2, f3 and f4. Each round takes input the current 512 bit blocks being processed (Yq) and the 160 bit buffer value a ABCDE and updates the contents of the buffer. Each round also make use of an additive constant Kt where 0 ≤ t ≤ 79 indicates one of the 80 steps across four rounds.
The output of 4th round added to the input to the 1st round (CVq) to produce CVq+1.

[image:]

Step-5: output: after all L 512 bits block have been processed, the output from the Lth stage is the 160 bit message digest.

The behavior of SHA-1can be summarized as:
 CV0=IV
 CVq+1=SUM32 (CVq, ABCDEq)
 MD=CVL
IV initialize value of the ABCDE buffer define in step-3
ABCDEQ output of last round of qth message block.
Lnumber of block (512 bit) in message
SUM32addition modulo 232
MD final message Digest Value.
SHA-1 Compression Function:
The logic in each of the 80 steps of the processing of one 512 bit block each round is of the form (Figure 12.6)
 (
A,B,C,D,E
(E +f(
t,B,C,D
) +S
5
(A)+
W
t
+K
t
),A,S
30
(B),C,D
)

A,B,C,D,E(E+f(t,B,C,D)+S5(a)+Wt+Kt),A,S30(B),C,D
A,B,C,D,E The five words of the buffer
t Step number; 0 ≤ t ≤ 79
f(t,B,C,D) Primitive logical function for step t
SK circular left shift(rotation of the 32 bit argument by k bits
Wt a 32 bit word derived from the current 512 bit input block
Kt an additive constant; four distinct values are used, as defined previously
+ addition modulo 232
[image:]

	

RIPEMD-160
Introduction:-
RIPEMD (RACE Integrity Primitives Evaluation Message Digest) is a family of cryptography hash functions.
It was developed by the group of researchers at COSIC (computer Security & Industrial Cryptography) in 1996.

Purpose:- Providing authentication

RIPEMD-160 Logic:
· The algorithm takes as input message of arbitrary length & produces as output a 160-bit message digest.
· Produce as output a 160 bit message digest.
· The input is processed in 512 bit blocks

Structure of RIPED-160:
	The overall message processing structure is similar to the MD%, with block length of 512 bits & hash length & chaining variable length of 160 bits.

Processing Steps of RIPEMD:
Algorithm processing Steps:
Step1: Append Padding Bits
Step 2: Append Length
Step 3: Initialize MD Buffer
Step 4: Process Message in 512 bit (16-Word) Blocks
Step 5: Output

Step-1: Appending Padding Bits. The original message is "padded" (extended) so that its length (in bits) is congruent to 448, modulo 512. The padding rules are:
· The original message is always padded with one bit "1" first.
· Then zero or more bits "0" are padded to bring the length of the message up to 64 bits fewer than a multiple of 512.

Step-2: append length: a block of 64 bits is appended to the message. This block is treated as unsigned 64 bit integers (most significant byte first) and contains the length of the original message.

Step-3: Initialize MD buffer: 160 bit buffer is used to hold intermediate and final results of the hash function. This buffer can be represented as five 32 bit registers (A, B,C,D,E). the register are initialized to the following 32 bit integers

· Word A is initialized to: 0x67452301.
· Word B is initialized to: 0xEFCDAB89.
· Word C is initialized to: 0x98BADCFE.
· Word D is initialized to: 0x10325476.
· Word E is initialized to: 0xC3D2E1F0

Step 4: Process Message in 512 bits:
The heart of the algorithm is a module that consists of 10 round (5 paired round) of 16 steps each.
Ten rounds has similar structures, but each uses a different primitive logical function, we refer it as f1, f2, f3, f4 and f5. Each round takes input the current 512 bit blocks being processed (Yq) and the 160 bit buffer value a ABCDE and updates the contents of the buffer. Each round also make use of an additive constant.

[image:]
CVq 1st round input
CVq+1 output

Step-5:output: after all L 512 bit blocks have been processed, the output from the Lth stage is the 160 bit message digest.
Comparison of MD5, SHA-1 RIPEMD-160

	
	MD5
	SHA-1
	RIPEMD-160

	Digest Length
	128 bits
	160 bits
	160 bits

	Basic unit of Processing
	512 bits
	512 bits
	512 bits

	Number of Steps
	64 (4 rounds of 16)
	80(4 rounds of 20)
	160(5 paired rounds of 16)

	Maximum Message Size
	∞
	264-1 bits
	264-1 bits

	Primitive logical functions
	4
	4
	5

	Additive constants used
	64
	4
	9

	Endianness
	Little endian
	Big endian
	Little endian

Endian refer to the convention used to interpret the bytes making up a data word when those bytes are stored in computer memory.
Little & Big endian are two ways of storing multibyte data types (int, float etc).
In little endian machines the last byte of binary representation of the multi byte data type is stored first.
In Big endian machines the first byte of binary representation of the multi byte data type is stored first.
HMAC:
Hash based Message Authentication Code:	
HMAC is a special construction for calculating MAC (message authentication code) involving a cryptographic hash function in combination with a secret cryptographic key.	

· MAC is used to simultaneously verify both the data integrity and the authentication of message.
· Hash function such as MD5 or SHA-1 may be used in calculation of an HMAC, the resulting MAC algorithm is termed HMAC-MD5 or HMAC_SHA-1.
· The strength of HMAC depends upon the underlying hash function, the size of its hash output and the size of the quality of the key.	

HMAC Algorithm
[image:]
[image:]
[image:]
Digital Signature:
Definition: A digital signature or digital signature scheme is a mathematical scheme for demonstration the authenticity of digital message or document.

Means, a digital signature is an authentication mechanism that enables the creator of a message to attach a code that act as a signature.

This signature is formed by taking the hash of the message and encrypting the message with the creator’s private key. The signature guarantees the source and integrity of the message.

The digital signature standard (DSS) is an NIST standard that uses the secure hash algorithm (SHA).
Where it used:
Message authentication protects two parties who exchange message from any third party. But it does not protect the two parties against each other.
Example: Suppose that john sends an authenticated message to marry, using any authentication scheme (symmetric or public key cryptography). There are two disputes (clash or fight or arguments) that could arise.
1. Mary may forge a different message & claim that it came from John. Means, Mary would simply have to create a message & append an authentication code using the key, which John and Mary share.
2. John can deny sending the message Because it is possible for mary to forge that john did n fact send the message.

Properties of Digital Signature:
• It must verify the author and the date and time of the signature.
• It must authenticate the contents at the time of the signature.
• It must be verifiable by third parties, to resolve disputes.

Digital Signature Requirements
1. The signature must be a bit pattern that depends on the message being signed.
2. The signature must use some information unique to the sender to prevent both forgery and denial.
3. It must be relatively easy to produce the digital signature.
4. It must be relatively easy to recognize and verify the digital signature.
5. It must be computationally infeasible to forge a digital signature, either by constructing a new message for an existing digital signature or by constructing a fraudulent digital signature for a given message.
6. It must be practical to retain a copy of the digital signature in storage.

Approaches for Digital Signature:
· Direct Digital Signature
· Arbitrated Digital Signature
Direct Digital Signature:
The term direct digital signature refers to a digital signature scheme that involves only the communicating parties (source, destination).
The validly of scheme depends on the security of the sender’s private key.
The sender later wishes to deny sending a particular message by claiming the private key was lost or stolen or some other reason.
There is chance in stole the private key of a sender at some time T.

Arbitrated Digital Signature:
In this every signed message from a sender X to a receiver Y goes first to an arbiter A, who subjects the message and its signature to a number of tests to check it origin and content. The message is then dated and sent to Y.
This process is an indication that has been verified to the satisfaction of the arbiter.
By this process, it solves the direct Digital signature problem.

Sender X,
Arbiter A,
Receiver Y,
· X construct message M and compute hash value H(M) then X transmitted “M+ Digital Signature” to A.
Signature consists identity “IDx of X +hash value” of all encrypted using KXA (it is common shared key between Sender X and Arbiter A).
· A A decrypts the signature & checks the hash value to validate the message. Then transmit it to Y by encryption it with KAY (it is common shared key between Arbiter A and Receiver Y). the message include IDx and M & time Stam.
· Y Decrypt it by using KAY
XA: M||EKXA[IDx||H(M)]
AY: EKAY[IDx||M|| EKXA[IDx||H(M)]||T]

DIGITAL SIGNATURE STANDARD:
The National Institute of Standards and Technology (NIST) has published Federal
Information Processing Standard FIPS 186, known as the Digital Signature Standard (DSS). The DSS makes use of the Secure Hash Algorithm (SHA) presents a new digital signature technique, the Digital Signature Algorithm (DSA).
The DSS Approach
The DSS uses an algorithm that is designed to provide only the digital signature function. Unlike RSA, it cannot be used for encryption or key exchange. Nevertheless, it is a public-key technique.
The DSS approach also makes use of a hash function. The hash code is provided as input to a signature function along with a random number generated for this particular signature. The signature function also depends on the sender’s private key (PRa) and a set of parameters known to a group of communicating principals. We can consider this set to constitute a global public key (PUG).
[image:]
[image:]
QUESTION BANK

1. What are the requirements of a Hash function
2. Explain SHA-1 algorithm.
3. Explain MD5 in detail
4. Explain Simple Hash Function.
5. What is a MAC? Explain message authentication using MAC
6. Explain RIPEMD-160 in detail
7. Compare the principal characteristics of MD5,SHA-1,and RIPEMD-160
8. What is a digital signature? Explain this using public key algorithm
9. Explain the HMAC algorithm in detail.
10. Explain the Digital Signature Algorithm.
11. Write about MAC functions?
12. Compare and contrast SHA-1 and HMAC functions
13. Define digital signature? Explain its role in network security.
14. Explain about SHA-512.
15. What is one-way hash? With an example, describe one-way hash function.
16. Explain the procedure involved in SHA-1 algorithm.

UNIT-IV
Kerberos:
· Introduction:
Def: Introduction: Kerberos is a computer network authentication protocol which works on the basis of “tickets” to allow nodes communication over a non secure network.
(Or) It is a secure method (service) for authenticate a request for a service in a computer network.
It was developed in “Athena Project” at MIT.
It provide authentication by using Secret-Key cryptography.

· Use of Kerberos:
Kerberos is used for decreasing the burden for server, means; Kerberos will takes responsibility of authentication.
It is designed for providing for strong authentication for client/server applications by using secret-key.

· Versions:
Kerberos Version4
Kerberos Version5

Characteristics of KERBEROS:
· It is secure: it never sends a password unless it is encrypted.
· Only a single login is required per session. Credentials defined at login are then passed between resources without the need for additional logins.
· The concept depends on a trusted third party – a Key Distribution Center (KDC). The KDC is aware of all systems in the network and is trusted by all of them.
· It performs mutual authentication, where a client proves its identity to a server and a server proves its identity to the client.

Requirements Kerberos:
· Secure: Kerberos should be strong enough that a potential opponent does not find it to be the weak link.
· Reliable: Kerberos should be highly reliable and should employ distributed server architecture with one system able to back up another.
· Transparent: Ideally, the user should not be aware that authentication is taking place beyond the requirement to enter a password.
· Scalable: The system should be capable of supporting large numbers of clients and servers.

Kerberos Version 4
Version 4 of Kerberos makes use of DES
A SIMPLE AUTHENTICATION DIALOGUE
An authentication server (AS) is used in the simple authentication
Authentication server (AS) that knows the passwords of all users and stores these in a centralized database. In addition, the AS shares a unique secret key with each server. These keys have been distributed physically or in some other secure manner. Consider the following hypothetical dialogue:
[image:]
The user logs on to a workstation and requests access to server V. The client module C in the user’s workstation requests the user’s password and then sends a message to the AS that includes the user’s ID, the server’s ID, and the user’s password.
The AS checks its database to see if the user has supplied the proper password for this user ID and whether this user is permitted access to server V. If both tests are passed, the AS accepts the user as authentic and must now convince the server that this user is authentic.To do so, the AS creates a ticket that contains the user’s ID and network address and the server’s ID. This ticket is encrypted using the secret key shared by the AS and this server.This ticket is then sent back to C.

With this ticket, C can now apply to V for service. C sends a message to V containing C’s ID and the ticket. V decrypts the ticket and verifies that the user ID in the ticket is the same as the unencrypted user ID in the message.
 Problem: An opponent could capture the ticket transmitted in message (2), then use the name IDC and transmit a message of form (3) another workstation. The server would receive a valid ticket that matches the user ID and grant access to the user on that other workstation. To prevent this attack, the AS includes in the ticket the network address from which the original request came.
A MORE SECURE AUTHENTICATION DIALOGUE
The main problem in A SIMPLE AUTHENTICATION DIALOGUE, the user must enter password for every individual service.
Kerberos overcome this by using a new server, known as Ticket granting server (TGS).
Now in Kerberos we have two servers; AS and TGS.
[image:]

The new service, TGS, issues tickets to users who have been authenticated to AS. Thus, the user first requests a ticket-granting ticket ([image:]) from the AS.
The client module in the user workstation saves this ticket. Each time the user requires access to a new service, the client applies to the TGS, using the ticket to authenticate itself. The TGS then grants a ticket for the particular service. The client saves each service-granting ticket and uses it to authenticate its user to a server each time a particular service is requested. Let us look at the details of this scheme:

1. The client requests a ticket-granting ticket on behalf of the user by sending its user’s ID to the AS, together with the TGS ID, indicating a request to use the TGS service.
2. The AS responds with a ticket that is encrypted with a key that is derived from the user’s password (), which is already stored at the AS. When this response arrives at the client, the client prompts the user for his or her password, generates the key, and attempts to decrypt the incoming message. If the correct password is supplied, the ticket is successfully recovered.
3. The client requests a service-granting ticket on behalf of the user. For this purpose, the client transmits a message to the TGS containing the user’s ID, the ID of the desired service, and the ticket-granting ticket.
4. The TGS decrypts the incoming ticket using a key shared only by the AS and the TGS[image:]and verifies the success of the decryption by the presence of its ID. It checks to make sure that the lifetime has not expired. Then it compares the user ID and network address with the incoming information to authenticate the user. If the user is permitted access to the server V, the TGS issues a ticket to grant access to the requested service.
5. The client requests access to a service on behalf of the user. For this purpose, the client transmits a message to the server containing the user’s ID and the service-granting ticket. The server authenticates by using the contents of the ticket.

[image:]
[image:]

[image:]

[image:]
[image:]

KERBEROS REALMS AND MULTIPLE KERBERI
A full-service Kerberos environment consisting of a Kerberos server, a number of clients, and a number of application servers requires the following:
1. The Kerberos server must have the user ID and hashed passwords of all participating users in its database. All users are registered with the Kerberos server.
2. The Kerberos server must share a secret key with each server. All servers are registered with the Kerberos server

Such an environment is referred to as a Kerberos realm. The concept of realm can be explained as follows.
A Kerberos realm is a set of managed nodes that share the same Kerberos database. The Kerberos database resides on the Kerberos master computer system, which should be kept in a physically secure room. A read-only copy of the Kerberos database might also reside on other Kerberos computer systems. However, all changes to the database must be made on the master computer system. Changing or accessing the contents of a Kerberos database requires the Kerberos master password.

A related concept is that of a Kerberos principal, which is a service or user that is known to the Kerberos system. Each Kerberos principal is identified by its principal name. Principal names consist of three parts: a service or user name, an instance name, and a realm name. Networks of clients and servers under different administrative organizations typically constitute different realms. That is, it generally is not practical or does not conform to administrative policy to have users and servers in one administrative domain registered with a Kerberos server elsewhere. However, users in one realm may need access to servers in other realms, and some servers may be willing to provide service to users from other realms, provided that those users are authenticated. Kerberos provides a mechanism for supporting such interrealm authentication. For two realms to support interrealm authentication, a third requirement is added:
3. The Kerberos server in each interoperating realm shares a secret key with the server in the other realm. The two Kerberos servers are registered with each other.

The scheme requires that the Kerberos server in one realm trust the Kerberos server in the other realm to authenticate its users. Furthermore, the participating servers in the second realm must also be willing to trust the Kerberos server in the first realm. With these ground rules in place, we can describe the mechanism as follows (Figure 15.2): A user wishing service on a server in another realm needs a ticket for that server. The user’s client follows the usual procedures to gain access to the local TGS and then requests a ticket-granting ticket for a remote TGS (TGS in another realm).The client can then apply to the remote TGS for a service-granting ticket for the desired server in the realm of the remote TGS. The details of the exchanges illustrated in Figure 15.2 are as follows (compare Table 15.1).

[image:]
The ticket presented to the remote server (Vrem) indicates the realm in which the user was originally authenticated. The server chooses whether to honour the remote request.
[image:]

Kerberos Version 5:
Kerberos version 5 is specified in RFC 4120 and provides a number of improvements over version 4.
Kerberos version 4 was developed for use within the Project Athena environment and, accordingly, did not fully address the need to be of general purpose. This led to the following environmental shortcomings.

1. Encryption system dependence: Version 4requires the use of DES. Export restriction on DES as well as doubts about the strength of DES were thus of concern. In version 5, ciphertext is tagged with an encryption-type identifier so that any encryption technique may be used. Encryption keys are tagged with a type and a length, allowing the same key to be used in different algorithms and allowing the specification of different variations on a given algorithm.
2. Internet protocol dependence: Version 4 requires the use of Internet Protocol (IP) addresses. Other address types, such as the ISO network address, are not accommodated. Version 5 network addresses are tagged with type and length, allowing any network address type to be used.
3. Message byte ordering: In version 4, the sender of a message employs a byte ordering of its own choosing and tags the message to indicate least significant byte in lowest address or most significant byte in lowest address. This technique works but does not follow established conventions. In version 5, all message structures are defined using Abstract Syntax Notation One (ASN.1) and Basic Encoding Rules (BER), which provide an unambiguous byte ordering.
4. Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity in units of five minutes. Thus, the maximum lifetime that can be expressed is 28*5=1280 minutes (a little over 21 hours).This may be inadequate for some applications (e.g., a long-running simulation that requires valid Kerberos credentials throughout execution). In version 5, tickets include an explicit start time and end time, allowing tickets with arbitrary lifetimes.

5. Authentication forwarding: Version 4 does not allow credentials issued to one client to be forwarded to some other host and used by some other client. This capability would enable a client to access a server and have that server access another server on behalf of the client. For example, a client issues a request to a print server that then accesses the client’s file from a file server, using the client’s credentials for access. Version 5 provides this capability.

6. Inter-realm authentication: In version 4, interoperability among N realms requires on the order of N2 Kerberos-to-Kerberos relationships, as described earlier. Version 5 supports a method that requires fewer relationships, as described shortly.

[image:]

Key Management and Distribution
Key distribution is the function that delivers a key to two parties who wish to exchange secure encrypted data. Some sort of mechanism or protocol is needed to provide for the secure distribution of keys.
Key distribution often involves the use of master keys, which are infrequently used and are long lasting, and session keys, which are generated and distributed for temporary use between two parties.

SYMMETRIC KEY DISTRIBUTION USING SYMMETRIC ENCRYPTION
In symmetric encryption two parties to an exchange must share the same key, and that key must be protected from access by others.

The key distribution technique is a term that refers to the means of delivering a key to two parties who wish to exchange data without allowing others to see the key. For two parties A and B, key distribution can be achieved in a number of ways, as follows:
1. A can select a key and physically deliver it to B.
2. A third party can select the key and physically deliver it to A and B.
3. If ‘A’ and ‘B’ have previously and recently used a key, one party can transmit the new key to the other, encrypted using the old key.
4. If ‘A’ and ‘B’ each has an encrypted connection to a third party C, C can deliver a key on the encrypted links to A and B.

Physical delivery (1 & 2) is simplest - but only applicable when there is personal contact between recipient and key issuer. This is fine for link encryption where devices & keys occur in pairs, but does not scale as number of parties who wish to communicate grows. 3 is mostly based on 1 or 2 occurring first.
A third party, whom all parties trust, can be used as a trusted intermediary to mediate the establishment of secure communications between them (4) Must trust intermediary not to abuse the knowledge of all session keys. As number of parties grows, some variant of 4 is only practical solution to the huge growth in number of keys potentially needed.

Key distribution centre:
· The use of a key distribution center is based on the use of a hierarchy of keys. At a minimum, two levels of keys are used.
· Communication between end systems is encrypted using a temporary key, often referred to as a Session key.
· Typically, the session key is used for the duration of a logical connection and then discarded
· Master key is shared by the key distribution center and an end system or user and used to encrypt the session key.

Key Distribution Scenario:
Let us assume that user A wishes to establish a logical connection with B and requires a one-time session key to protect the data transmitted over the connection. A has a master key, Ka, known only to itself and the KDC; similarly, B shares the master key Kb with the KDC. The following steps occur:
[image:]
1. A issues a request to the KDC for a session key to protect a logical connection to B. The message includes the identity of A and B and a unique identifier, N1, for this transaction, which we refer to as a nonce. The nonce may be a timestamp, a counter, or a random number; the minimum requirement is that it differs with each request. Also, to prevent masquerade, it should be difficult for an opponent to guess the nonce. Thus, a random number is a good choice for a nonce.
2. The KDC responds with a message encrypted using Ka Thus, A is the only one who can successfully read the message, and A knows that it originated at the KDC. The message includes two items intended for A:
a. The one-time session key, Ks, to be used for the session
b. The original request message, including the nonce, to enable A to match this response with the appropriate request.
Thus, A can verify that its original request was not altered before reception by the KDC and, because of the nonce, that this is not a replay of some previous request. In addition, the message includes two items intended for B:
· The one-time session key, Ks to be used for the session
· An identifier of A (e.g., its network address), IDA
These last two items are encrypted with Kb (the master key that the KDC shares with B).They are to be sent to B to establish the connection and prove A's identity.
3. A stores the session key for use in the upcoming session and forwards to B the information that originated at the KDC for B, namely, E(Kb, [Ks || IDA]). Because this information is encrypted with Kb, it is protected from eavesdropping. B now knows the session key (Ks), knows that the other party is A (from IDA), and knows that the information originated at the KDC (because it is encrypted using Kb).
At this point, a session key has been securely delivered to A and B, and they may begin their protected exchange. However, two additional steps are desirable:
4. Using the newly minted session key for encryption, B sends a nonce, N2, to A.
5. Also using Ks, A responds with f(N2), where f is a function that performs some transformation on N2 (e.g., adding one).

SYMMETRIC KEY DISTRIBUTION USING ASYMMETRIC
ENCRYPTION
· Once public keys have been distributed or have become accessible, secure communication that thwarts eavesdropping, tampering, or both, is possible.
· Public-key encryption provides for the distribution of secret keys to be used for conventional encryption.
Simple Secret Key Distribution
· A generates a public/private key pair {PUa, PRa} and transmits a message to B consisting of PUa and an identifier of A, IDA
· B generates a secret key, Ks, and transmits it to A, encrypted with A's public key.
· A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only A can decrypt the message, only A and B will know the identity of Ks.
· A discards PUa and PRa and B discards PUa.
[image:]
Here third party can intercept messages and then either relay the intercepted message or substitute another message Such an attack is known as a man-in-the-middle attack.

Secret Key Distribution with Confidentiality and Authentication:
[image:]
· A uses B's public key to encrypt a message to B containing an identifier of A (IDA) and a nonce (N1), which is used to identify this transaction uniquely
· B sends a message to A encrypted with PUa and containing A's nonce (N1) as well as a new nonce generated by B (N2) Because only B could have decrypted message (1), the presence of N1 in message (2) assures A that the correspondent is B
· A returns N2 encrypted using B's public key, to assure B that its correspondent is A.
· A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption of this message with B's public key ensures that only B can read it; encryption with A's private key ensures that only A could have sent it.
· B computes D(PUa, D(PRb, M)) to recover the secret key.

Publicly Available Directory

· can obtain greater security by registering keys with a public directory
· directory must be trusted with properties:
· The authority maintains a directory with a {name, public key} entry for each participant.
· Each participant registers a public key with the directory authority.
· A participant may replace the existing key with a new one at any time because the corresponding private key has been compromised in some way.
· Participants could also access the directory electronically. For this purpose, secure, authenticated communication from the authority to the participant is mandatory.
[image:]
This scheme is clearly more secure than individual public announcements but still has vulnerabilities.
If an adversary succeeds in obtaining or computing the private key of the directory authority, the adversary could authoritatively pass out counterfeit public keys and subsequently impersonate any participant and eavesdrop on messages sent to any participant.
Another way to achieve the same end is for the adversary to tamper with the records kept by the authority.

Public-Key Authority:
· Stronger security for public-key distribution can be achieved by providing tighter control over the distribution of public keys from the directory.
· It requires users to know the public key for the directory, and that they interact with directory in real-time to obtain any desired public key securely.
· Totally seven messages are required.

[image:]
1. A sends a time stamped message to the public-key authority containing a request for the current public key of B.
2. The authority responds with a message that is encrypted using the authority's private key, PRauth Thus, A is able to decrypt the message using the authority's public key. Therefore, A is assured that the message originated with the authority. The message includes the following:
a. B's public key, PUb which A can use to encrypt messages destined for B
b. The original request, to enable A to match this response with the corresponding earlier request and to verify that the original request was not altered before reception by the authority.
c. The original timestamp, so A can determine that this is not an old message from the authority containing a key other than B's current public key.
3. A stores B's public key and also uses it to encrypt a message to B containing an identifier of A (IDA) and a nonce (N1), which is used to identify this transaction uniquely.
4. B retrieves A's public key from the authority in the same manner as A retrieved B's public key.
5. At this point, public keys have been securely delivered to A and B, and they may begin their protected exchange. However, two additional steps are desirable:
6. B sends a message to A encrypted with PUa and containing A's nonce (N1) as well as a new nonce generated by B (N2) Because only B could have decrypted message (3), the presence of N1 in message (6) assures A that the correspondent is B.
7. A returns N2, encrypted using B's public key, to assure B that its correspondent is A.

X.509 CERTIFICATES

Introduction:
· In cryptography, X.509 is a TU-T (International Telecommunication Union-Telecommunication) standard for proving authentication directory service.
· The directory is a server or distributed set of servers that maintains a database of information about users.
· This information includes a mapping from users name to a network address, as well as other attributes and information about the users.
· X.509 defines alternative authentication protocols based on the use of public key certificates.
· This was initial used in 1988.

User of X.509:
X.509 is an important standard because the certificate structure and authentication protocols defined in X.509 are used in a variety context.
Example: this format is used in
· S/MIME
· IP Security
· SSL (Secure Socket Layer)
· TLS (Transport Layer Security)
· SET (Secure Electronic Transaction)

X.509 is based on the use of public key cryptography & Digital Signature.

Certificates:
In X.509 Scheme, the public key certificate associated with each user.
The user’s certificates created by some trusted Certificate Authority (CA) and placed in the directory by the CA or by the user.

The directory server itself is not responsible for the creation of public keys or for the certification function; it merely provides an easily accessible location for users to obtain certificates.
The standard uses the notation for a certificate of:
CA<<A>> where the CA signs the certificate for user A with its private key. In more detail CA<<A>> = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA}.
If the corresponding public key is known to a user, then that user can verify that a certificate signed by the CA is valid.

[image:]
· Version: Differentiates among successive versions of the certificate format; the default is version 1. If the issuer unique identifier or subject unique identifier are present, the value must be version 2. If one or more extensions are present, the version must be version 3.
· Serial number: An integer value unique within the issuing CA that is unambiguously associated with this certificate.
· Signature algorithm identifier: The algorithm used to sign the certificate together with any associated parameters. Because this information is repeated in the signature field at the end of the certificate, this field has little, if any, utility.
· Issuer name: X.500 is the name of the CA that created and signed this certificate.
· Period of validity: Consists of two dates: the first and last on which the certificate is valid.
· Subject name: The name of the user to whom this certificate refers. That is, this certificate certifies the public key of the subject who holds the corresponding private key.
· Subject’s public-key information: The public key of the subject, plus an identifier of the algorithm for which this key is to be used, together with any associated parameters.
· Issuer unique identifier: An optional-bit string field used to identify uniquely the issuing CA in the event the X.500 name has been reused for different entities.
· Subject unique identifier: An optional-bit string field used to identify uniquely the subject in the event the X.500 name has been reused for different entities.
· Extensions: A set of one or more extension fields. Extensions were added in version 3 and are discussed later in this section.
· Signature: Covers all of the other fields of the certificate; it contains the hash code of the other fields encrypted with the CA’s private key. This field includes the signature algorithm identifier.
Certificate Revocation:
A certificate includes a period of validity. Typically a new certificate is issued just before the expiration of the old one. In addition, it may be desirable on occasion to revoke a certificate before it expires, for one of a range of following reasons:
1. The user’s private key is assumed to be compromised.
2. The user is no longer certified by this CA. Reasons for this include that the subject’s name has changed, the certificate is superseded, or the certificate was not issued in conformance with the CA’s policies.
3. The CA’s certificate is assumed to be compromised.

To support this, each CA must maintain a list consisting of all revoked but not expired certificates issued by that CA, known as the certificate revocation list (CRL). Each certificate revocation list (CRL) posted to the directory is signed by the issuer and includes the issuer's name, the date the list was created, the date the next CRL is scheduled to be issued, and an entry for each revoked certificate. Each entry consists of the serial number of a certificate and revocation date for that certificate. Because serial numbers are unique within a CA, the serial number is sufficient to identify the certificate.

When a user receives a certificate in a message, the user must determine whether the certificate has been revoked, by checking the directory CRL each time a certificate is received, this often does not happen in practice.

X.509 Version 3
The X.509 version 2 format does not convey all of the information. Rather than continue to add fields to a fixed format, standards developers felt that a more flexible approach was needed. X.509 version 3 includes a number of optional extensions that may be added to the version 2 format. Each extension consists of an extension identifier, a criticality indicator, and an extension value. The criticality indicator indicates whether an extension can be safely ignored or not.
Certificate Extensions
The certificate extensions fall into three main categories:
· Key and policy information - convey additional information about the subject and issuer keys, plus indicators of certificate policy. A certificate policy is a named set of rules that indicates the applicability of a certificate to a particular community and/or class of application with common security requirements.
· Subject and issuer attributes - support alternative names, in alternative formats, for a certificate subject or certificate issuer and can convey additional information about the certificate subject; eg. postal address, email address, or picture image
· Certification path constraints - allow constraint specifications to be included in certificates issued for CA’s by other CA’s that may restrict the types of certificates that can be issued by the subject CA or that may occur subsequently in a certification chain.

PUBLIC-KEY INFRASTRUCTURE
RFC 2822 (Internet Security Glossary) defines public-key infrastructure (PKI) as the set of hardware, software, people, policies, and procedures needed to create, manage, store, distribute, and revoke digital certificates based on asymmetric cryptography. The principal objective for developing a PKI is to enable secure, convenient, and efficient acquisition of public keys. The Internet Engineering Task Force (IETF) Public Key Infrastructure X.509 (PKIX) working group has been the driving force behind setting up a formal (and generic) model based on X.509 that is suitable for deploying a certificate-based architecture on the Internet. This section describes the PKIX model. Figure 14.16 shows the interrelationship among the key elements of the PKIX model. These elements are
· End entity: A generic term used to denote end users, devices (e.g., servers, routers), or any other entity that can be identified in the subject field of a public key certificate. End entities typically consume and/or support PKI-related services.
· Certification authority (CA): The issuer of certificates and (usually) certificate revocation lists (CRLs). It may also support a variety of administrative functions, although these are often delegated to one or more Registration Authorities.
· Registration authority (RA): An optional component that can assume a number of administrative functions from the CA. The RA is often associated with the end entity registration process but can assist in a number of other areas as well.
· CRL issuer: An optional component that a CA can delegate to publish CRLs.
· Repository: A generic term used to denote any method for storing certificates and CRLs so that they can be retrieved by end entities.
[image:]

PKIX Management Functions
PKIX identifies a number of management functions that potentially need to be supported by management protocols. These are indicated in Figure 14.16 and include the following:
· Registration: This is the process whereby a user first makes itself known to a CA (directly or through an RA), prior to that CA issuing a certificate or certificates for that user. Registration begins the process of enrolling in a PKI. Registration usually involves some offline or online procedure for mutual authentication. Typically, the end entity is issued one or more shared secret keys used for subsequent authentication.
· Initialization: Before a client system can operate securely, it is necessary to install key materials that have the appropriate relationship with keys stored elsewhere in the infrastructure. For example, the client needs to be securely initialized with the public key and other assured information of the trusted CA(s), to be used in validating certificate paths.
· Certification: This is the process in which a CA issues a certificate for a user’s public key, returns that certificate to the user’s client system, and/or posts that certificate in a repository.
· Key pair recovery: Key pairs can be used to support digital signature creation and verification, encryption and decryption, or both. When a key pair is used for encryption/decryption, it is important to provide a mechanism to recover the necessary decryption keys when normal access to the keying material is no longer possible, otherwise it will not be possible to recover the encrypted data. Loss of access to the decryption key can result from forgotten passwords/PINs, corrupted disk drives, damage to hardware tokens, and so on. Key pair recovery allows end entities to restore their encryption/decryption key pair from an authorized key backup facility (typically, the CA that issued the end entity’s certificate).
· Key pair update: All key pairs need to be updated regularly (i.e., replaced with a new key pair) and new certificates issued. Update is required when the certificate lifetime expires and as a result of certificate revocation.
· Revocation request: An authorized person advises a CA of an abnormal situation requiring certificate revocation. Reasons for revocation include private-key compromise, change in affiliation, and name change.
· Cross certification: Two CAs exchange information used in establishing a cross-certificate. A cross-certificate is a certificate issued by one CA to another CA that contains a CA signature key used for issuing certificates.

PKIX Management Protocols
The PKIX working group has defines two alternative management protocols between PKIX entities that support the management functions listed in the preceding subsection. RFC 2510 defines the certificate management protocols (CMP). Within CMP, each of the management functions is explicitly identified by specific protocol exchanges. CMP is designed to be a flexible protocol able to accommodate a variety of technical, operational, and business models. RFC 2797 defines certificate management messages over CMS (CMC), where CMS refers to RFC 2630, cryptographic message syntax. CMC is built on earlier work and is intended to leverage existing implementations. Although all of the PKIX functions are supported, the functions do not all map into specific protocol exchanges.

Electronic Mail Security

The protection of email from unauthorized access and inspection is known as electronic privacy. There are mainly two methods for proving security for electronic mails
· Pretty Good Privacy
· S/MIME
Pretty Good Privacy:
In virtually all distributed environments, electronic mail is the most heavily used network based application.
Introduction:
PGP is data encryption and decryption computer program that provides privacy (Confidentiality) and authentication for data communication.
It was created by Phil Zimmermann in 1991
Use of PGP:
	It is used in Electronic mail
			File storage applications.
PGP is an open-source, freely available software package for e-mail security. It provides authentication through the use of digital signature, confidentiality through the use of symmetric block encryption, compression using the ZIP algorithm, and e-mail compatibility using the radix-64 encoding scheme.
PGP incorporates tools for developing a public-key trust model and public-key certificate management

PGP has grown explosively and is now widely used, because of following reasons:
1. It is available free worldwide in versions that run on a variety of platforms, including Windows, UNIX, Macintosh, and many more. In addition, the commercial version satisfies users who want a product that comes with vendor support.
2. It is based on algorithms that have survived extensive public review and are considered extremely secure. Specifically, the package includes RSA, DSS, and Diffie-Hellman for public-key encryption; CAST-128, IDEA, and 3DES for symmetric encryption; and SHA-1 for hash coding.
3. It has a wide range of applicability, from corporations that wish to select and enforce a standardized scheme for encrypting files and messages to individuals who wish to communicate securely with others worldwide over the Internet and other networks.
4. It was not developed by, nor is it controlled by, any governmental or standards organization. For those with an instinctive distrust of “the establishment,” this makes PGP attractive.
5. PGP is now on an Internet standards track (RFC 3156; MIME Security with Open PGP). Nevertheless, PGP still has an aura of an antiestablishment endeavour.

Providing authentication by using PGP:
The sequence steps for providing authentication by using PGP
1. The sender creates a message.
2. SHA-1 is used to generate a 160-bit hash code of the message.
3. The hash code is encrypted with RSA using the sender’s private key, and the result is prepended to the message.
4. The receiver uses RSA with the sender’s public key to decrypt and recover the hash code.
5. The receiver generates a new hash code for the message and compares it with the decrypted hash code. If the two match, the message is accepted as authentic.
[image:]
[image:]

Confidentiality by using PGP

[image:]
Steps for providing confidentiality:
1. The sender generates a message and a random 128-bit number to be used as a session key for this message only.
2. The message is encrypted using CAST-128 (or IDEA or 3DES) with the session key.
3. The session key is encrypted with RSA using the recipient’s public key and is prepended to the message.
4. The receiver uses RSA with its private key to decrypt and recover the session key.
5. The session key is used to decrypt the message.

	Function
	Algorithms Used
	Description

	Digital
signature
	DSS/SHA or RSA/SHA
	A hash code of a message is created using
SHA-1.This message digest is encrypted using DSS or RSA with the sender’s private key and included with the message.

	Message
encryption
	CAST or IDEA or Three-key
Triple DES with Diffie- Hellman
or RSA
	A message is encrypted using CAST-128 or
IDEA or 3DES with a one-time session key generated by the sender. The session key is
encrypted using Diffie-Hellman or RSA with
the recipient’s public key and included with the message.

	Compression
	ZIP
	A message may be compressed for storage or transmission using ZIP.

	E-mail
compatibility
	Radix-64 conversion
	To provide transparency for e-mail applications, an encrypted message may be converted to an ASCII string using radix-64 conversion.

PGP for both authentication and confidentiality:
[image:]
S/MIME

· Secure/Multipurpose Internet Mail Extension is a security enhancement to the MIME internet email standard, based on technology from R.S.A Data security.
· S/MIME is for industry standard for commercial and organizational use.
· It defined in number of documents that is RFC 2630, RFC 2632, RFC 2633

E-mail format standard, RFC 822, which is still in common use. The most recent version of this format specification is RFC 5322 (Internet Message Format).

RFC 5322 defines a format for text messages that are sent using electronic mail. It has been the standard for Internet-based text mail messages and remains in common use. In the RFC 5322 context, messages are viewed as having an envelope and contents. The envelope contains whatever information is needed to accomplish transmission and delivery. The contents compose the object to be delivered to the recipient. The RFC 5322 standard applies only to the contents. However, the content standard includes a set of header fields that may be used by the mail system to create the envelope, and the standard is intended to facilitate the acquisition of such information by programs.

Multipurpose Internet Mail Extensions:
Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322 framework that is intended to address some of the problems and limitations of the use of Simple Mail Transfer Protocol (SMTP).

The following are limitations of the SMTP/5322 scheme.
1. SMTP cannot transmit executable files or other binary objects. A number of schemes are in use for converting binary files into a text form that can be used by SMTP mail systems, including the popular UNIX UUencode/Uudecode scheme. However, none of these is a standard or even a de facto standard.
2. SMTP cannot transmit text data that includes national language characters, because these are represented by 8-bit codes with values of 128 decimal or higher, and SMTP is limited to 7-bit ASCII.
3. SMTP servers may reject mail message over a certain size.
4. SMTP gateways that translate between ASCII and the character code EBCDIC do not use a consistent set of mappings, resulting in translation problems.
5. SMTP gateways to X.400 electronic mail networks cannot handle non-textual data included in X.400 messages.
6. Some SMTP implementations do not adhere completely to the SMTP standards defined in RFC 821. Common problems include:
a. Deletion, addition, or reordering of carriage return and linefeed
b. Truncating or wrapping lines longer than 76 characters
c. Removal of trailing white space (tab and space characters)
d. Padding of lines in a message to the same length
e. Conversion of tab characters into multiple space characters
MIME is intended to resolve these problems in a manner that is compatible with existing RFC 5322 implementations. The specification is provided in RFCs 2045 through 2049.

MIME has 5 header fields
The five header fields defined in MIME are

1. MIME-Version: Must have the parameter value 1.0. This field indicates that the message conforms to RFCs 2045 and 2046.
2. Content-Type: Describes the data contained in the body with sufficient detail that the receiving user agent can pick an appropriate agent or mechanism to represent the data to the user or otherwise deal with the data in an appropriate manner.
3. Content-Transfer-Encoding: Indicates the type of transformation that has been used to represent the body of the message in a way that is acceptable for mail transport.
4. Content-ID: Used to identify MIME entities uniquely in multiple contexts.
5. Content-Description: A text description of the object with the body; this is useful when the object is not readable (e.g., audio data).

S/MIME Functionality
In terms of general functionality, S/MIME is very similar to PGP. Both offer the ability to sign and/or encrypt messages. In this subsection, we briefly summarize S/MIME capability.
S/MIME provides the following functions.
· Enveloped data: This consists of encrypted content of any type and encrypted-content encryption keys for one or more recipients.
· Signed data: A digital signature is formed by taking the message digest of the content to be signed and then encrypting that with the private key of the signer. The content plus signature are then encoded using base64 encoding. A signed data message can only be viewed by a recipient with S/MIME capability.
· Clear-signed data: As with signed data, a digital signature of the content is formed. However, in this case, only the digital signature is encoded using base64.As a result, recipients without S/MIME capability can view the message content, although they cannot verify the signature.
· Signed and enveloped data: Signed-only and encrypted-only entities may be nested, so that encrypted data may be signed and signed data or clear-signed data may be encrypted.

S/MIME uses the following terminology taken from RFC 2119 (Key Words for use in RFCs to Indicate Requirement Levels) to specify the requirement level:
· MUST: The definition is an absolute requirement of the specification. An implementation must include this feature or function to be in conformance with the specification.
· SHOULD: There may exist valid reasons in particular circumstances to ignore this feature or function, but it is recommended that an implementation include the feature or function.

QUESTION BANK
1. With the help of neat diagram, explain Kerberos action
2. Explain the following PGP services.
3. i) Authentication ii) Confidentiality
4. Explain X.509 Authentication Services
5. Describe S/MIME.
6. Explain Kerberos version 4 message exchange
7. Briefly explain the PGP services
8. What is Kerberos? What are the requirements of a Kerberos
9. Explain the limitations of SMTP/822 scheme.
10. Explain briefly the services provided by PGP?
11. Write a short note on the functionality of S/MIME.
12. Distinguish between Kerberos version 4 and version 5?
13. Describe the X.509 version 3 in details?
14. Briefly describe public key management in PGP
15. What are the requirements for the use of a public-key certificate scheme?
16. What problem was Kerberos designed to address? Briefly describe Kerberos system.
17. What is CA? Briefly describe Public-key certificates.

UNIT-V
IPSECURITY:

Definition: IPSec is a protocol suit for securing internet protocol (IP) communications by authenticating and encrypting each IP packet by authenticating and encrypting each packet of communication session.
It added to either current version of the IP (i.e., IPV4 or IPV6), by means of additional header.
Applications of IPsec
IPsec provides the capability to secure communications across a LAN, across private and public WANs, and across the Internet.
Examples of its use include:
· Secure branch office connectivity over the Internet: A company can build a secure virtual private network over the Internet or over a public WAN. This enables a business to rely heavily on the Internet and reduce its need for private networks, saving costs and network management overhead.
· Secure remote access over the Internet: An end user whose system is equipped with IP security protocols can make a local call to an Internet Service Provider (ISP) and gain secure access to a company network. This reduces the cost of toll charges for travelling employees and telecommuters.
· Establishing extranet and intranet connectivity with partners: IPsec can be used to secure communication with other organizations, ensuring authentication and confidentiality and providing a key exchange mechanism.
· Enhancing electronic commerce security: Even though some Web and electronic commerce applications have built-in security protocols, the use of IPsec enhances that security. IPsec guarantees that all traffic designated by the network administrator is both encrypted and authenticated, adding an additional layer of security to whatever is provided at the application layer.

Benefits of IPsec

· When IPsec is implemented in a firewall or router, it provides strong security that can be applied to all traffic crossing the perimeter. Traffic within a company or workgroup does not incur the overhead of security-related processing.
· IPsec in a firewall is resistant to bypass if all traffic from the outside must use IP and the firewall is the only means of entrance from the Internet into the organization.
· IPsec is below the transport layer (TCP, UDP) and so is transparent to applications. There is no need to change software on a user or server system when IPsec is implemented in the firewall or router. Even if IPsec is implemented in end systems, upper-layer software, including applications, is not affected.
· IPsec can be transparent to end users. There is no need to train users on security mechanisms, issue keying material on a per-user basis, or revoke keying material when users leave the organization.
· IPsec can provide security for individual users if needed. This is useful for offsite workers and for setting up a secure virtual sub-network within an organization for sensitive applications.

IPsec Documents
RFC 2401 Overview of Security Architecture.
RFC 2402 Description of a Packet Authentication Extension of IPV4 & IVP6
RFC 2406 Description of a Packet encryption Extension of IPV4 & IVP6
RFC 2408 Specification of Key Management Capabilities.

IP Sec OverView:

[image:]
· Architecture: Covers the general concepts, security requirements, definitions, and mechanisms defining IPSec technology	
· Encapsulating Security Payload (ESP): Covers the packet format and general issues related to the use of the ESP for packet encryption and, optionally, authentication.
· Authentication Header (AH): Covers the packet format and general issues related to the use of AH for packet authentication.
· Encryption Algorithm: A set of documents that describe how various encryption algorithms are used for ESP.
· Authentication Algorithm: A set of documents that describe how various authentication algorithms are used for AH and for the authentication option of ESP.
· Key Management: Documents that describe key management schemes.
· Domain of Interpretation (DOI): Contains values needed for the other documents to relate to each other. These include identifiers for approved encryption and authentication algorithms, as well as operational parameters such as key lifetime.

IPSec Services
IPSec architecture makes use of two major protocols (i.e., Authentication Header and ESP protocols) for providing security at IP level. This facilitates the system to beforehand choose an algorithm to be implemented, security protocols needed and any cryptographic keys required to provide requested services. The IPSec services are as follows:

· Connectionless Integrity:- Data integrity service is provided by IPSec via AH which prevents the data from being altered during transmission.
· Data Origin Authentication:- This IPSec service prevents the occurrence of replay attacks, address spoofing etc., which can be fatal
· Access Control:- The cryptographic keys are distributed and the traffic flow is controlled in both AH and ESP protocols, which is done to accomplish access control over the data transmission.
· Confidentiality:- Confidentiality on the data packet is obtained by using an encryption technique in which all the data packets are transformed into cipher-text packets which are unreadable and difficult to understand.
· Limited Traffic Flow Confidentiality:- This facility or service provided by IPSec ensures that the confidentiality is maintained on the number of packets transferred or received. This can be done using padding in ESP.
· Replay packets Rejection:- The duplicate or replay packets are identified and discarded using the sequence number field in both AH and ESP.

[image:]

Security Associations

Since IPSEC is designed to be able to use various security protocols, it uses Security Associations (SA) to specify the protocols to be used. SA is a database record which specifies security parameters controlling security operations. They are referenced by the sending host and established by the receiving host. An index parameter called the Security Parameters Index (SPI) is used. SAs are in one direction only and a second SA must be established for the transmission to be bi-directional. A security association is uniquely identified by three parameters:

1. Security Parameters Index (SPI): A bit string assigned to this SA and having local significance only. The SPI is carried in AH and ESP headers to enable the receiving system to select the SA under which a received packet will be processed.
2. IP Destination Address: Currently, only unicast addresses are allowed; this is the address of the destination endpoint of the SA, which may be an end user system or a network system such as a firewall or router.
3. Security Protocol Identifier: This indicates whether the association is an AH or ESP security association.

SA Parameters:
In each IPSec implementation, there is a nominal Security Association Database that defines the parameters associated with each SA. A security association is normally defined by the following parameters:
· Sequence Number Counter: A 32-bit value used to generate the Sequence Number field in AH or ESP headers
· Sequence Counter Overflow: A flag indicating whether overflow of the Sequence Number Counter should generate an auditable event and prevent further transmission of packets on this SA (required for all implementations).
· Anti-Replay Window: Used to determine whether an inbound AH or ESP packet is a replay
· AH Information: Authentication algorithm, keys, key lifetimes, and related parameters being used with AH (required for AH implementations).
· ESP Information: Encryption and authentication algorithm, keys, initialization values, key lifetimes, and related parameters being used with ESP (required for ESP implementations).
· Lifetime of This Security Association: A time interval or byte count after which an SA must be replaced with a new SA (and new SPI) or terminated, plus an indication of which of these actions should occur (required for all implementations).
· IPSec Protocol Mode: Tunnel, transport, or wildcard (required for all implementations).
· Path MTU: Any observed path maximum transmission unit (maximum size of a packet that can be transmitted without fragmentation) and aging variables (required for all implementations).

Transport and Tunnel Modes

Tunnel mode is most commonly used between gateways, or at an end-station to a gateway, the gateway acting as a proxy for the hosts behind it.
Tunnel mode protects the internal routing information by encrypting the IP header of the original packet. The original packet is encapsulated by another set of IP headers.

Transport mode is used between end-stations or between an end-station and a gateway, if the gateway is being treated as a host—for example, an encrypted Telnet session from a workstation to a router, in which the router is the actual destination. The transport mode encrypts only the payload and ESP trailer; so the IP header of the original packet is not encrypted.

	
	Transport Mode SA
	Tunnel Mode SA

	AH
	Authenticates IP payload and selected portions of IP header and IPv6 extension headers
	Authenticates entire inner IP packet plus selected portions of outer IP header

	ESP
	Encrypts IP payload and any IPv6 extension header
	Encrypts inner IP packet

	ESP with authentication
	Encrypts IP payload and any IPv6 extension header. Authenticates IP payload but no IP header
	Encrypts inner IP packet.
Authenticates inner IP packet.

IP sec can be used (both AH packets and ESP packets) in two modes
· Transport mode: the IP sec header is inserted just after the IP header –this contains the security information, such as SA identifier, encryption, authentication
· Typically used in end-to-end communication
· IP header not protected

· Tunnel mode: the entire IP packet, header and all, is encapsulated in the body of a new IP packet with a completely new IP header.
· Typically used in firewall-to-firewall communication
· Provides protection for the whole IP packet
· No routers along the way will be able (and will not need) to check the content of the packets

Authentication Header

The Authentication Header provides support for data integrity and authentication of IP packets. The data integrity feature ensures that undetected modification to a packet's content in transit is not possible. The authentication feature enables an end system or network device to authenticate the user or application and filter traffic accordingly; it also prevents the address spoofing attacks observed in today's Internet. The AH also guards against the replay attack. Authentication is based on the use of a message authentication code (MAC), hence the two parties must share a secret key. The Authentication Header consists of the following fields:
[image:]
IPSec Authentication Header
· Next Header (8 bits): Identifies the type of header immediately following this header.
· Payload Length (8 bits): Length of Authentication Header in 32-bit words, minus 2. For example, the default length of the authentication data field is 96 bits, or three 32-bit words. With a three-word fixed header, there are a total of six words in the header, and the Payload Length field has a value of 4.
· Reserved (16 bits): For future use.
· Security Parameters Index (32 bits): Identifies a security association.
· Sequence Number (32 bits): A monotonically increasing counter value, discussed later.
· Authentication Data (variable): A variable-length field (must be an integral number of 32-bit words) that contains the Integrity Check Value (ICV), or MAC, for this packet.

Encapsulating Security Payload:
The Encapsulating Security Payload provides confidentiality services, including confidentiality of message contents and limited traffic flow confidentiality. As an optional feature, ESP can also provide an authentication service.
ESP Format
The following figure shows the format of an ESP packet. It contains the following fields:

[image:]
IPSec ESP format
· Security Parameters Index (32 bits): Identifies a security association.
· Sequence Number (32 bits): A monotonically increasing counter value; this provides an anti-replay function, as discussed for AH.
· Payload Data (variable): This is a transport-level segment (transport mode) or IP packet (tunnel mode) that is protected by encryption.
· Padding (0-255 bytes): This field is used to make the length of the plaintext to be a multiple of some desired number of bytes. It is also added to provide confidentiality.
· Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.
· Next Header (8 bits): Identifies the type of data contained in the payload data field by identifying the first header in that payload (for example, an extension header in IPv6, or an upper-layer protocol such as TCP).
· Authentication Data (variable): A variable-length field (must be an integral number of 32-bit words) that contains the Integrity Check Value computed over the ESP packet minus the Authentication Data field.

Adding encryption makes ESP a bit more complicated because the encapsulation surrounds the payload rather than precedes it as with AH: ESP includes header and trailer fields to support the encryption and optional authentication. It also provides Tunnel and Transport modes. The IPSec RFCs don't insist upon any particular encryption algorithms, but we find DES, triple-DES, AES, and Blowfish in common use to shield the payload from prying eyes. The algorithm used for a particular connection is specified by the Security Association and this SA includes not only the algorithm, but the key used. Unlike AH, which provides a small header before the payload, ESP surrounds the payload it's protecting. The Security Parameters Index and Sequence Number serve the same purpose as in AH, but we find padding, the next header, and the optional Authentication Data at the end, in the ESP Trailer.

[image:]
It's possible to use ESP without any actual encryption (to use a NULL algorithm), which nonetheless structures the packet the same way. This provides no confidentiality, and it only makes sense if combined with ESP authentication. Padding is provided to allow block- oriented encryption algorithms room for multiples of their block size, and the length of that padding is provided in the pad len field. The next hdr field gives the type (IP, TCP, UDP, etc.) of the payload in the usual way, though it can be thought of as pointing "backwards" into the packet rather than forward as we've seen in AH. In addition to encryption, ESP can also optionally provide authentication, with the same HMAC as found in AH. Unlike AH, however, this authentication is only for the ESP header and encrypted payload: it does not cover the full IP packet.

Key Management

The key management portion of IPSec involves the determination and distribution of secret keys. The IPSec Architecture document mandates support for two types of key management:

· Manual: A system administrator manually configures each system with its own keys and with the keys of other communicating systems. This is practical for small, relatively static environments.

· Automated: An automated system enables the on-demand creation of keys for SAs and facilitates the use of keys in a large distributed system with an evolving configuration.

The default automated key management protocol for IPSec is referred to as ISAKMP/Oakley and consists of the following elements:
· Oakley Key Determination Protocol: Oakley is a key exchange protocol based on the Diffie-Hellman algorithm but providing added security. Oakley is generic in that it does not dictate specific formats.
· Internet Security Association and Key Management Protocol (ISAKMP): ISAKMP provides a framework for Internet key management and provides the specific protocol support, including formats, for negotiation of security attributes.

Oakley Key Determination Protocol
Oakley is a refinement of the Diffie-Hellman key exchange algorithm. The Diffie-Hellman algorithm has two attractive features:
· Secret keys are created only when needed. There is no need to store secret keys for a long period of time, exposing them to increased vulnerability.
· The exchange requires no pre-existing infrastructure other than an agreement on the global parameters.
However, Diffie-Hellman has got some weaknesses:
· No identity information about the parties is provided.
· It is possible for a man-in-the-middle attack
· It is computationally intensive. As a result, it is vulnerable to a clogging attack, in
· which an opponent requests a high number of keys.

Oakley is designed to retain the advantages of Diffie-Hellman while countering its weaknesses.

Features of Oakley
The Oakley algorithm is characterized by five important features:
1. It employs a mechanism known as cookies to thwart clogging attacks.
2. It enables the two parties to negotiate a group; this, in essence, specifies the global parameters of the Diffie-Hellman key exchange.
3. It uses nonces to ensure against replay attacks.
4. It enables the exchange of Diffie-Hellman public key values.
5. It authenticates the Diffie-Hellman exchange to thwart man-in-the-middle attacks.

In clogging attacks, an opponent forges the source address of a legitimate user and sends a public Diffie-Hellman key to the victim. The victim then performs a modular exponentiation to compute the secret key. Repeated messages of this type can clog the victim's system with useless work. The cookie exchange requires that each side send a pseudorandom number, the cookie, in the initial message, which the other side acknowledges. This acknowledgment must be repeated in the first message of the Diffie- Hellman key exchange. The recommended method for creating the cookie is to perform a fast hash (e.g., MD5) over the IP Source and Destination addresses, the UDP Source and Destination ports, and a locally generated secret value. Oakley supports the use of different groups for the Diffie-Hellman key exchange. Each group includes the definition of the two global parameters and the identity of the algorithm. Oakley employs nonces to ensure against replay attacks. Each nonce is a locally generated pseudorandom number. Nonces appear in responses and are encrypted during certain portions of the exchange to secure their use. Three different authentication methods can be used with Oakley are digital signatures, public-key encryption and Symmetric-key encryption.

ISAKMP:
ISAKMP defines procedures and packet formats to establish, negotiate, modify, and delete security associations. As part of SA establishment, ISAKMP defines payloads for exchanging key generation and authentication data.

ISAKMP Header Format
An ISAKMP message consists of an ISAKMP header followed by one or more payloads and must follow UDP transport layer protocol for its implementation. The header format of an ISAKMP header is shown below:

[image:]
ISAKMP Payload Types
All ISAKMP payloads begin with the same generic payload header shown below.

[image:]
The Next Payload field has a value of 0 if this is the last payload in the message; otherwise its value is the type of the next payload. The Payload Length field indicates the length in octets of this payload, including the generic payload header. There are many different ISAKMP payload types. They are:

A. The SA payload is used to begin the establishment of an SA. The Domain of Interpretation parameter identifies the DOI under which negotiation is taking place. The Situation parameter defines the security policy for this negotiation; in essence, the levels of security required for encryption and confidentiality are specified (e.g., sensitivity level, security compartment).
B. The Proposal payload contains information used during SA negotiation. The payload indicates the protocol for this SA (ESP or AH) for which services and mechanisms are being negotiated. The payload also includes the sending entity's SPI and the number of transforms. Each transform is contained in a transform payload.
C. The Transform payload defines a security transform to be used to secure the communications channel for the designated protocol. The Transform # parameter serves to identify this particular payload so that the responder may use it to indicate acceptance of this transform. The Transform-ID and Attributes fields identify a specific transform (e.g., 3DES for ESP, HMAC-SHA-1-96 for AH) with its associated attributes (e.g., hash length).
D. The Key Exchange payload can be used for a variety of key exchange techniques, including Oakley, Diffie-Hellman, and the RSA-based key exchange used by PGP. The Key Exchange data field contains the data required to generate a session key and is dependent on the key exchange algorithm used.
E. The Identification payload is used to determine the identity of communicating peers and may be used for determining authenticity of information. Typically the ID Data field will contain an IPv4 or IPv6 address.
F. The Certificate payload transfers a public-key certificate. The Certificate Encoding field indicates the type of certificate or certificate-related information, which may include SPKI, ARL, CRL, PGP info etc. At any point in an ISAKMP exchange, the sender may include a Certificate Request payload to request the certificate of the other communicating entity.
G. The Hash payload contains data generated by a hash function over some part of the message and/or ISAKMP state. This payload may be used to verify the integrity of the data in a message or to authenticate negotiating entities.
H. The Signature payload contains data generated by a digital signature function over some part of the message and/or ISAKMP state. This payload is used to verify the integrity of the data in a message and may be used for nonrepudiation services.
I. The Nonce payload contains random data used to guarantee liveness during an exchange and protect against replay attacks.
J. The Notification payload contains either error or status information associated with this SA or this SA negotiation. Some of the ISAKMP error messages that have been defined are Invalid Flags, Invalid Cookie, Payload Malformed etc
K. The Delete payload indicates one or more SAs that the sender has deleted from its database and that therefore are no longer valid.

Web Security
Usage of internet for transferring or retrieving the data has got many benefits like speed, reliability, security etc. Much of the Internet's success and popularity lies in the fact that it is an open global network. At the same time, the fact that it is open and global makes it not very secure. The unique nature of the Internet makes exchanging information and transacting business over it inherently dangerous. The faceless, voiceless, unknown entities and individuals that share the Internet may or may not be who or what they profess to be. In addition, because the Internet is a global network, it does not recognize national borders and legal jurisdictions. As a result, the transacting parties may not be where they say they are and may not be subject to the same laws or regulations.

For the exchange of information and for commerce to be secure on any network, especially the Internet, a system or process must be put in place that satisfies requirements for confidentiality, access control, authentication, integrity, and non-repudiation. These requirements are achieved on the Web through the use of encryption and by employing digital signature technology. There are many examples on the Web of the practical application of encryption. One of the most important is the SSL protocol.

A summary of types of security threats faced in using the Web is given below:

Web Security Threats:
Table 16.1 provides a summary of the types of security threats faced when using the Web. One way to group these threats is in terms of passive and active attacks. Passive attacks include eavesdropping on network traffic between browser and server and gaining access to information on a Web site that is supposed to be restricted. Active attacks include impersonating another user, altering messages in transit between client and server, and altering information on a Web site. Another way to classify Web security threats is in terms of the location of the threat: Web server, Web browser, and network traffic between browser and server.
Issues of server and browser security fall into the category of computer system security; Part Four of this book addresses the issue of system security in general but is also applicable to Web system security. Issues of traffic security fall into the category of network security and are addressed in this chapter.
[image:]

Secure Socket Layer/Transport Layer Security:
Secure Socket Layer (SSL) provides security services between TCP and applications that use TCP. The Internet standard version is called Transport Layer Service (TLS).
SSL/TLS provides confidentiality using symmetric encryption and message integrity using a message authentication code.
SSL/TLS includes protocol mechanisms to enable two TCP users to determine the security mechanisms and services they will use.

Netscape originated SSL. Version 3 of the protocol was designed with public review and input from industry and was published as an Internet draft document. Subsequently, when a consensus was reached to submit the protocol for Internet standardization, the TLS working group was formed within IETF to develop a common standard. This first published version of TLS can be viewed as essentially an SSLv3.1 and is very close to and backward compatible with SSLv3.

SSL Architecture
SSL is designed to make use of TCP to provide a reliable end-to-end secure service.
SSL is not a single protocol but rather two layers of protocols, as illustrated in
Figure 16.2.
[image:]

The SSL Record Protocol provides basic security services to various higher-layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which provides the transfer service for Web client/server interaction, can operate on top of SSL. Three higher-layer protocols are defined as part of SSL: the Handshake Protocol, The Change Cipher Spec Protocol, and the Alert Protocol. These SSL-specific protocols are used in the management of SSL exchanges and are examined later in this section.
Two important SSL concepts are the SSL session and the SSL connection, which are defined in the specification as follows.
· Connection: A connection is a transport (in the OSI layering model definition) that provides a suitable type of service. For SSL, such connections are peer-to-peer relationships. The connections are transient. Every connection is associated with one session.
· Session: An SSL session is an association between a client and a server. Sessions are created by the Handshake Protocol. Sessions define a set of cryptographic security parameters which can be shared among multiple connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection.

There are a number of states associated with each session. Once a session is established, there is a current operating state for both read and write (i.e., receive and send). In addition, during the Handshake Protocol, pending read and write states are created. Upon successful conclusion of the Handshake Protocol, the pending states become the current states.

A session state is defined by the following parameters.
· Session identifier: An arbitrary byte sequence chosen by the server to identify an active or resumable session state.
· Peer certificate: An X509.v3 certificate of the peer. This element of the state may be null.
· Compression method: The algorithm used to compress data prior to encryption.
· Cipher spec: Specifies the bulk data encryption algorithm (such as null,AES, etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC calculation. It also defines cryptographic attributes such as the hash_size.
· Master secret: 48-byte secret shared between the client and server.
· Is resumable: A flag indicating whether the session can be used to initiate new connections.

A connection state is defined by the following parameters
· Server and client random: Byte sequences that are chosen by the server and client for each connection.
· Server write MAC secret: The secret key used in MAC operations on data sent by the server.
· Client write MAC secret: The secret key used in MAC operations on data sent by the client.
· Server write key: The secret encryption key for data encrypted by the server and decrypted by the client.
· Client write key: The symmetric encryption key for data encrypted by the client and decrypted by the server.
· Initialization vectors: When a block cipher in CBC mode is used, an initialization vector (IV) is maintained for each key. This field is first initialized by the SSL Handshake Protocol. Thereafter, the final cipher-text block from each record is preserved for use as the IV with the following record.
· Sequence numbers: Each party maintains separate sequence numbers for transmitted and received messages for each connection. When a party sends or receives a change cipher spec message, the appropriate sequence number is set to zero. Sequence numbers may not exceed 264 – 1.

SSL Record Protocol
The SSL Record Protocol provides two services for SSL connections:
· Confidentiality: The Handshake Protocol defines a shared secret key that is used for conventional encryption of SSL payloads.
· Message Integrity: The Handshake Protocol also defines a shared secret key that is used to form a message authentication code (MAC).

Figure 16.3 indicates the overall operation of the SSL Record Protocol. The Record Protocol takes an application message to be transmitted, fragments the data into manageable blocks, optionally compresses the data, applies a MAC, encrypts, adds a header, and transmits the resulting unit in a TCP segment. Received data are decrypted, verified, decompressed, and reassembled before being delivered to higher-level users.
[image:]

The first step is fragmentation. Each upper-layer message is fragmented into blocks of 214 bytes (16384 bytes) or less. Next, compression is optionally applied. Compression must be lossless and may not increase the content length by more than 1024 bytes.1In SSLv3 (as well as the current version of TLS), no compression algorithm is specified, so the default compression algorithm is null.
The next step in processing is to compute a message authentication code over the compressed data. For this purpose, a shared secret key is used.

SSL Handshake Protocol Message Types
[image:]

[image:]

The exchange is initiated by the client, which sends a client_hello message with the following parameters:
· Version: The highest SSL version understood by the client.
· Random: A client-generated random structure consisting of a 32-bit timestamp and 28 bytes generated by a secure random number generator. These values serve as nonces and are used during key exchange to prevent replay attacks.
· Session ID: A variable-length session identifier. A nonzero value indicates that the client wishes to update the parameters of an existing connection or to create a new connection on this session. A zero value indicates that the client wishes to establish a new connection on a new session.
· CipherSuite: This is a list that contains the combinations of cryptographic algorithms supported by the client, in decreasing order of preference. Each element of the list (each cipher suite) defines both a key exchange algorithm and a CipherSpec; these are discussed subsequently.
· Compression Method: This is a list of the compression methods the client supports.

Transport Layer Security
TLS was released in response to the Internet community’s demands for a standardized protocol. TLS (Transport Layer Security), defined in RFC 2246, is a protocol for establishing a secure connection between a client and a server. TLS (Transport Layer Security) is capable of authenticating both the client and the server and creating a encrypted connection between the two. Many protocols use TLS (Transport Layer Security) to establish secure connections, including HTTP, IMAP, POP3, and SMTP. The TLS Handshake Protocol first negotiates key exchange using an asymmetric algorithm such as RSA or Diffie- Hellman. The TLS Record Protocol then begins opens an encrypted channel using a symmetric algorithm such as RC4, IDEA, DES, or 3DES. The TLS Record Protocol is also responsible for ensuring that the communications are not altered in transit. Hashing algorithms such as MD5 and SHA are used for this purpose. RFC 2246 is very similar to SSLv3. There are some minor differences ranging from protocol version numbers to generation of key material.

Version Number: The TLS Record Format is the same as that of the SSL Record Format and the fields in the header have the same meanings. The one difference is in version values. For the current version of TLS, the Major Version is 3 and the Minor Version is 1.

Message Authentication Code: Two differences arise one being the actual algorithm and the other being scope of MAC calculation. TLS makes use of the HMAC algorithm defined in RFC 2104. SSLv3 uses the same algorithm, except that the padding bytes are concatenated with the secret key rather than being XORed with the secret key padded to the block length. For TLS, the MAC calculation encompasses the fields.
[image:]

[image:]

The MAC calculation covers all of the fields covered by the SSLv3 calculation, plus the field TLSCompressed. version, which is the version of the protocol being employed.

Pseudorandom Function: TLS makes use of a pseudorandom function referred to as PRF to expand secrets into blocks of data for purposes of key generation or validation. The PRF is based on the following data expansion function:
[image:]
The data expansion function makes use of the HMAC algorithm, with either MD5 or SHA-1 as the underlying hash function. As can be seen, P_hash can be iterated as many times as necessary to produce the required quantity of data. each iteration involves two executions of HMAC, each of which in turn involves two executions of the underlying hash algorithm.

SET (Secure Electronic Transaction):
SET is an open encryption and security specification designed to protect credit card transactions on the Internet. SET is not itself a payment system. Rather it is a set of security protocols and formats that enables users to employ the existing credit card payment infrastructure on an open network, such as the Internet, in a secure fashion. In essence, SET provides three services:
· Provides a secure communications channel among all parties involved in a transaction.
· Provides trust by the use of X.509v3 digital certificates
· Ensures privacy because the information is only available to parties in a transaction when and where necessary

Requirements:
· Provide confidentiality of payment and ordering information: It is necessary to assure cardholders that this information is safe and accessible only to the intended recipient. Confidentiality also reduces the risk of fraud by either party to the transaction or by malicious third parties. SET uses encryption to provide confidentiality.
· Ensure the integrity of all transmitted data: That is, ensure that no changes in content occur during transmission of SET messages. Digital signatures are used to provide integrity.
· Provide authentication that a cardholder is a legitimate user of a credit card account: A mechanism that links a cardholder to a specific account number reduces the incidence of fraud and the overall cost of payment processing. Digital signatures and certificates are used to verify that a cardholder is a legitimate user of a valid account.
· Provide authentication that a merchant can accept credit card transactions through its relationship with a financial institution: This is the complement to the preceding requirement. Cardholders need to be able to identify merchants with whom they can conduct secure transactions. Again, digital signatures and certificates are used.
· Ensure the use of the best security practices and system design techniques to protect all legitimate parties in an electronic commerce transaction: SET is a well-tested specification based on highly secure cryptographic algorithms and protocols.
· Create a protocol that neither depends on transport security mechanisms nor prevents their use: SET can securely operate over a ‘raw’ TCP/IP stack. However, SET does not interfere with the use of other security mechanisms, such as IPSec and SSL/TLS.
· Facilitate and encourage interoperability among software and network providers: The SET protocols and formats are independent of hardware platform, operating system, and web software.
[image:]
SET Participants
· Cardholder: purchasers interact with merchants from personal computers over the Internet
· Merchant: a person or organization that has goods or services to sell to the cardholder
· Issuer: a financial institution, such as a bank, that provides the cardholder with the payment card.
· Acquirer: a financial institution that establishes an account with a merchant and processes payment card authorizations and payments
· Payment gateway: a function operated by the acquirer or a designated third party that processes merchant payment messages
· Certification authority (CA): an entity that is trusted to issue X.509v3 public-key certificates for cardholders, merchants, and payment gateways

Key Features of SET:
· Confidentiality of information: cardholder account and payment information is secured as it travels across the network. An interesting and important feature of SET is that it prevents the merchant from learning the cardholder’s credit card number; this is only provided to the issuing bank. Conventional encryption by DES is used to provide confidentiality.
· Integrity of data: payment information sent from cardholders to merchants includes order information, personal data, and payment instructions. SET guarantees that these message contents are not altered in transit. RSA digital signatures, using SHA-1 hash codes, provide message integrity. Certain messages are also protected by HMAC using SHA-1.
· Cardholder account authentication: SET enables merchants to verify that a cardholder is a legitimate user of a valid card account number. SET uses X.509v3 digital certificates with RSA signatures for this purpose.
· Merchant authentication: SET enables cardholders to verify that a merchant has a relationship with a financial institution allowing it to accept payment cards. SET uses X.509v3 digital certificates with RSA signatures for this purpose.

[image: figure]

Intruders:
There are two most publicized threats to security. Those are intruders & Viruses.
Intruders are the attacker who attempt to breach (break) the security of Network.
Intruders generally referred to as a hacker or cracker.
They attack the network in order to get unauthorized access.
Intruders are 3 types
1. Masque reader: Is an external user who is not authorized to use a computer, and yet tries to gain privileges (powers) to access a legitimate user’s account.
Masque reader Is generally done either using stolen Id’s and passwords, or through by passing authentication mechanisms.

2. Misfeasor:- Is a legitimate user who either accesses some applications or data without sufficient privileges to access them or has privileges to access them but misuse these privileges.

3. Clandestine user: Is either an internal or external user, who gains administrative control of the system or uses this control to evade (avoid) access control and auditing information.
Intrusion Techniques:
The objective of the intruder is to gain access to a system or to increase the range of privileges accessible on a system.
A system must maintain a file that associates a password with each authorized user. If such a file is stored with no protection, then it is an easy matter to gain access to it and learn passwords. The password file can be protected in one of two ways:
1. One-way function: The system stores only the value of a function based on the user’s password. When the user presents a password, the system transforms that password and compares it with the stored value. In practice, the system usually performs a one-way transformation (not reversible) in which the password is used to generate a key for the one-way function and in which a fixed-length output is produced.
2. Access control: Access to the password file is limited to one or a very few accounts.

The following techniques for learning passwords:
1. Try default passwords used with standard accounts that are shipped with the system. Many administrators do not bother to change these defaults.
2. Exhaustively try all short passwords (those of one to three characters).
3. Try words in the system’s online dictionary or a list of likely passwords. Examples of the latter are readily available on hacker bulletin boards.
4. Collect information about users, such as their full names, the names of their spouse and children, pictures in their office, and books in their office that are related to hobbies.
5. Try users’ phone numbers, Social Security numbers, and room numbers.
6. Try all legitimate license plate numbers for this state.
7. Use a Trojan horse to bypass restrictions on access.
8. Tap the line between a remote user and the host system.

[image:]
INTRUSION DETECTION
To prevent intruders form getting unauthorized access to the system, intrusion prevention & intrusion detection can be used.
Intrusion prevention: is a process that involves detecting the signs of intrusion and attempting to stoop the intrusion efforts.
Intrusion detection: is a process that involves monitoring the actions occurring on the network or in computer system.
Is not possible to completely prevent the efforts of intruders, find their way into the secured system.
In information security, intruder detection is the art of detecting intruders behind attacks as unique persons. This technique tries to identify the person behind an attack by analyzing their computational behaviour.
There are generally two approaches for intrusion detection:
· Statistical anomaly detection
· Rule based Detection
Statistical anomaly detection: Involves the collection of data relating to the behavior of legitimate users over a period of time. Then statistical tests are applied to observed behavior to determine with a high level of confidence whether that behavior is not legitimate user behavior.
Statistical anomaly detection techniques fall into two broad categories:
1. Threshold detection and
2. Profile-based systems.

Threshold detection: This approach involves defining thresholds, independent of user, for the frequency of occurrence of various events. Means it involves counting the number of occurrences of a specific event type over an interval of time. If the count surpasses what is considered a reasonable number that one might expect to occur, then intrusion is assumed. Threshold analysis, by itself, is a crude and ineffective detector of even moderately sophisticated attacks. Both the threshold and the time interval must be determined. Because of the variability across users, such thresholds are likely to generate either a lot of false positives or a lot of false negatives. However, simple threshold detectors may be useful in conjunction with more sophisticated techniques.

Profile based: A profile of the activity of each user is developed and used to detect changes in the behavior of individual accounts. Profile-based anomaly detection focuses on characterizing the past behaviour of individual users or related groups of users and then detecting significant deviations. A profile may consist of a set of parameters, so that deviation on just a single parameter may not be sufficient in itself to signal an alert. The foundation of this approach is an analysis of audit records. The audit records provide input to the intrusion detection function in two ways. First, the designer must decide on a number of quantitative metrics that can be used to measure user behavior. An analysis of audit records over a period of time can be used to determine the activity profile of the average user. Thus, the audit records serve to define typical behavior. Second, current audit records are the input used to detect intrusion. That is, the intrusion detection model analyzes incoming audit records to determine deviation from average behavior.

Rule-based detection: Involves an attempt to define a set of rules that can be used to decide that a given behavior is that of an intruder. Means this detect intrusion by observing events in the system and applying a set of rules that lead to a decision regarding whether a given pattern of activity is or is not suspicious. In very general terms, we can characterize all approaches as focusing on either anomaly detection or penetration identification, although there is some overlap in these approaches.

a. Anomaly detection: Rules are developed to detect deviation from previous usage patterns. It is similar in terms of its approach and strengths to statistical anomaly detection. With the rule-based approach, historical audit records are analyzed to identify usage patterns and to generate automatically rules that describe those patterns. Rules may represent past behavior patterns of users, programs, privileges, time slots, terminals, and so on. Current behavior is then observed, and each transaction is matched against the set of rules to determine if it conforms to any historically observed pattern of behavior. As with statistical anomaly detection, rule-based anomaly detection does not require knowledge of security vulnerabilities within the system. Rather, the scheme is based on observing past behavior and, in effect, assuming that the future will be like the past. In order for this approach to be effective, a rather large database of rules will be needed.
b. Penetration identification: An expert system approach that searches for suspicious behavior. Rule-based penetration identification takes a very different approach to intrusion detection. The key feature of such systems is the use of rules for identifying known penetrations or penetrations that would exploit known weaknesses. Rules can also be defined that identify suspicious behavior, even when the behavior is within the bounds of established patterns of usage.Typically, the rules used in these systems are specific to the machine and operating system. The most fruitful approach to developing such rules is to analyze attack tools and scripts collected on the Internet. These rules can be supplemented with rules generated by knowledgeable security personnel. In this latter case, the normal procedure is to interview
Audit Records:
Audit is a planned and documented activity performed by qualified person to be determined by investigation, examination of object evidence.

A fundamental tool for intrusion detection is the audit record. Some record of ongoing activity by users must be maintained as input to an intrusion detection system. Basically, two plans are used:
1. Native audit records: Virtually all multiuser operating systems include accounting software that collects information on user activity.
Advantage of using this information is that no additional collection software is needed.
Disadvantage is that the native audit records may not contain the needed information or may not contain it in a convenient form.
2. Detection-specific audit records: A collection facility can be implemented that generates audit records containing only that information required by the intrusion detection system.
Advantage of such an approach is that it could be made vendor independent and ported to a variety of systems.
Disadvantage is the extra overhead involved in having, in effect, two accounting packages running on a machine.

A good example of detection-specific audit records
Each audit record contains the following fields:
· Subject: Initiators of actions.
A subject is typically a terminal user but might also be process acting on behalf of users or groups of users. All activity arises through commands issued by subjects. Subjects may be grouped into different access classes, and these classes may overlap.
· Action: Operation performed by the subject on or with an object;
Example, login, read, perform I/O, execute.
· Object: Receptors of actions.
Examples include files, programs, messages, records, terminals, printers, and user- or program-created structures. When a subject is the recipient of an action, such as electronic mail, then that subject is considered an object. Objects may be grouped by type. Object granularity may vary by object type and by environment. For example, database actions may be audited for the database as a whole or at the record level.
· Exception-Condition: Denotes which, if any, exception condition is raised on return.
· Resource-Usage: A list of quantitative elements in which each element gives the amount used of some resource (e.g., number of lines printed or displayed, number of records read or written, processor time, I/O units used, session elapsed time).
· Time-Stamp: Unique time-and-date stamp identifying when the action took place.

PASSWORD MANAGEMENT:
Virtually all multiuser systems require that a user provide not only a name or identifier (ID) but also a password. The password serves to authenticate the ID of the individual logging on to the system. In turn, the ID provides security in the following ways:
· The ID determines whether the user is authorized to gain access to a system. In some systems, only those who already have an ID filed on the system are allowed to gain access.
· The ID determines the privileges accorded to the user. A few users may have supervisory or “superuser” status that enables them to read files and perform functions that are especially protected by the operating system. Some systems have guest or anonymous accounts, and users of these accounts have more limited privileges than others.
· The ID is used in what is referred to as discretionary access control. For example, by listing the IDs of the other users, a user may grant permission to them to read files owned by that user.

THE VULNERABILITY (weakness)OF PASSWORDS:
· Each user selects a password of up to eight printable characters in length. This is converted into a 56-bit value (using 7-bit ASCII) that serves as the key input to an encryption routine. The encryption routine, known as crypt(3), is based on DES. The DES algorithm is modified using a 12-bit “salt” value. Typically, this value is related to the time at which the password is assigned to the user.
· The modified DES algorithm is exercised with a data input consisting of a 64-bit block of zeros. The output of the algorithm then serves as input for a second encryption.
· This process is repeated for a total of 25 encryptions. The resulting 64-bit output is then translated into an 11-character sequence.
· The hashed password is then stored, together with a plaintext copy of the salt, in the password file for the corresponding user ID.
· This method has been shown to be secure against a variety of cryptanalytic attacks
[image:]

The salt serves three purposes:
· It prevents duplicate passwords from being visible in the password file. Even if two users choose the same password, those passwords will be assigned at different times. Hence, the “extended” passwords of the two users will differ.
· It effectively increases the length of the password without requiring the user to remember two additional characters. Hence, the number of possible passwords is increased by a factor of 4096, increasing the difficulty of guessing a password.
· It prevents the use of a hardware implementation of DES, which would ease the difficulty of a brute-force guessing attack.

When a user attempts to log on to a UNIX system, the user provides an ID and a password. The operating system uses the ID to index into the password file and retrieve the plaintext salt and the encrypted password. The salt and user-supplied password are used as input to the encryption routine. If the result matches the stored value, the password is accepted.

The encryption routine is designed to discourage guessing attacks. Software implementations of DES are slow compared to hardware versions, and the use of 25 iterations multiplies the time required by 25. However, since the original design of this algorithm, two changes have occurred. First, newer implementations of the algorithm itself have resulted in speedups.

Malicious Program: is a set of instructions that run on your PC and make your system do something that an attacker wants it to do.
(Or) Malware, short for malicious software is any software used to disrupt computer operation, gather sensitive information, or gain access to private computer system.
It can appear in the form of executable code, scripts, active content and other software.

[image:]
Trap doors:
This is a method of gaining access to some part of a system other than by the normal procedure.
This is also called as back door
Example: gaining access without having to supply a password.
The trap door was the basic idea for the vulnerability portrayed (presented) in the movie war games.

Logic bombs:
Logic bombs are small programs or selections of a program triggered by some event such as certain date or time. Means, a piece of code that executes itself when predefined conditions are meet.
Example: A programmer could establish a logic bomb to delete critical sections of code if she/he is terminated from the company.

Trojan horse:
Trojan horse is a useful, or apparently useful program or command procedure containing hidden code that, when invoked, performs some unwanted or harmful function.
That is, Trojan horse programs can be used to accomplish functions indirectly that an unauthorized user could not accomplish directly.
Example: To gain access to the files of another user on a shared system, a user could create a Trojan horse program that, when executed changed the invoking user’s file permissions so that the files are readable by any user.

Trojan horses fit into one of three models:
1) Continuing to perform the function of the original program and additionally performing a separate malicious activity.
2) Continuing to perform the function of the original program but modifying the function to perform malicious activity (e.g., a Trojan horse version of a login program that collects passwords) or to disguise other malicious activity (e.g., a Trojan horse version of a process listing program that does not display certain processes that are malicious)
3) Performing a malicious function that completely replaces the function of the original program

Viruses:
Virus is a Malware that, when executed, tries to replicate itself into other executable code; when it succeeds the code is said to be infected. When the infected code is executed, the virus also executes.
This ability to replicate, can affect your computer without your permission and without your knowledge

A computer virus is a type of malware that propagates by inserting a copy of itself into and becoming part of another program.
It spreads from one computer to another, leaving infections as it travels. Viruses can range in severity from causing mildly annoying effects to damaging data or software and causing denial-of-service (DoS) conditions.

Types of Virus	:
1) Parasitic virus: Traditional and common virus. This will be attached with EXE files and search for other EXE file to infect them.
2) Memory Resident Virus: Present in your system memory as a system program. From here onwards it will infects all program that executes.
3) Boot Sector Virus: Infects the boot record and spread when the system is booted from the disk containing the virus.
4) Stealth Virus: This virus hides itself from detection of antivirus scanning.

Worm
Worm is a computer program that can run independently and can propagate a complete working version of itself onto other hosts on a network.
A worm (or worm) is a particular type of virus that can replicate through terminals connected to a network, then to perform certain actions which would impair the integrity of operating systems.
Which require the spreading of an infected host file, worms are standalone software and do not require a host program or human help to propagate. To spread, worms either exploit vulnerability on the target system or use some kind of social engineering to trick users into executing them.
A worm enters a computer through vulnerability in the system and takes advantage of file-transport or information-transport features on the system, allowing it to travel unaided.

Mobile Code
· Mobile code refers to programs (e.g., script, macro, or other portable instruction) that can be shipped unchanged to a heterogeneous collection of platforms and execute with identical semantics.
· The term also applies to situations involving a large homogeneous collection of platforms (e.g., Microsoft Windows).
· Mobile code is transmitted from a remote system to a local system and then executed on the local system without the user’s explicit instruction.
· Mobile code often acts as a mechanism for a virus, worm, or Trojan horse to be transmitted to the user’s workstation.
· In other cases, mobile code takes advantage of vulnerabilities to perform its own exploits, such as unauthorized data access or root compromise.
· Popular vehicles for mobile code include Java applets, ActiveX, JavaScript, and VBScript.
· The most common ways of using mobile code for malicious operations on local system are cross-site scripting, interactive and dynamic Web sites, e-mail attachments, and downloads from untrusted sites or of untrusted software.

Antivirus Approaches:
The ideal solution to the threat of viruses is prevention: Do not allow a virus to get into the system in the first place, or block the ability of a virus to modify any files containing executable code or macros. This goal is, in general, impossible to achieve, although prevention can reduce the number of successful viral attacks. The next best approach is to be able to do the following:
· Detection: Once the infection has occurred, determine that it has occurred and locate the virus.
· Identification: Once detection has been achieved, identify the specific virus that has infected a program.
· Removal: Once the specific virus has been identified, remove all traces of the virus from the infected program and restore it to its original state. Remove the virus from all infected systems so that the virus cannot spread further.
If detection succeeds but either identification or removal is not possible, then the alternative is to discard the infected file and reload a clean backup version. Advances in virus and antivirus technology go hand in hand. Early viruses were relatively simple code fragments and could be identified and purged with relatively simple antivirus software packages. As the virus arms race has evolved, both viruses and, necessarily, antivirus software have grown more complex and sophisticated.

Trusted Systems:
The ability of a system to defend against intruders and malicious programs is to implement trusted system technology.
Data Access Control:
· Following successful logon, the user has been granted access to one or a set of hosts and applications. This is generally not sufficient for a system that includes sensitive data in its database. Associated with each user, there can be a profile that specifies permissible operations and file accesses.
· The operating system can then enforce rules based on the user profile. The database management system, however, must control access to specific records or even portions of records.
· The operating system may grant a user permission to access a file or use an application, following which there are no further security checks, the database management system must make a decision on each individual access attempt.
· That decision will depend not only on the user's identity but also on the specific parts of the data being accessed and even on the information already divulged (won't reveal)to the user.
A general model of access control as exercised by a file or database management system is that of an access matrix (Figure 20.3a).

Figure 20.3. Access Control Structure
[image: 20fig03]
The basic elements of the model are as follows:
· Subject:
Subject is an entity capable of accessing objects. Generally, the concept of subject equates with that of process. Any user or application actually gains access to an object by means of a process that represents that user or application.
· Object: Anything to which access is controlled.
Examples include files, portions of files, programs, and segments of memory.
· Access right: The way in which an object is accessed by a subject.
Examples are read, write, and execute.

The Concept of Trusted Systems
A widely applicable requirement is to protect data or resources on the basis of levels of security. This is commonly found in the military, where information is categorized as unclassified (U), confidential (C), secret (S), top secret (TS), or beyond.
This concept is equally applicable in other areas, where information can be organized into gross categories and users can be granted clearances to access certain categories of data.
For example, the highest level of security might be for strategic corporate planning documents and data, accessible by only corporate officers and their staff; next might come sensitive financial and personnel data, accessible only by administration personnel, corporate officers, and so on.
Multilevel security: When multiple categories or levels of data are defined, the requirement is referred to as multilevel security.
The general statement of the requirement for multilevel security is that a subject at a high level may not convey information to a subject at a lower or noncomparable level unless that flow accurately reflects the will of an authorized user. For implementation purposes, this requirement is in two parts and is simply stated. A multilevel secure system must enforce the following:
· No read up: A subject can only read an object of less or equal security level. This is referred to in the literature as the Simple Security Property.
· No write down: A subject can only write into an object of greater or equal security level. This is referred to in the literature as the *- Property (pronounced star property).
These two rules, if properly enforced, provide multilevel security.
For a data processing system, the approach that has been taken, and has been the object of much research and development, is based on the reference monitor concept.

Figure 20.4. Reference Monitor Concept
[image: 20fig04]

This approach is depicted in Figure 20.4.
The reference monitor is a controlling element in the hardware and operating system of a computer that regulates the access of subjects to objects on the basis of security parameters of the subject and object.
The reference monitor has access to a file, known as the security kernel database that lists the access privileges (security clearance) of each subject and the protection attributes (classification level) of each object.
The reference monitor enforces the security rules (no read up, no write down) and has the following properties:
· Complete mediation: The security rules are enforced on every access, not just, for example, when a file is opened.
· Isolation: The reference monitor and database are protected from unauthorized modification.
· Verifiability: The reference monitor's correctness must be provable. That is, it must be possible to demonstrate mathematically that the reference monitor enforces the security rules and provides complete mediation and isolation.

These are stiff requirements. The requirement for complete mediation means that every access to data within main memory and on disk and tape must be mediated. Pure software implementations impose too high a performance penalty to be practical; the solution must be at least partly in hardware. The requirement for isolation means that it must not be possible for an attacker, no matter how clever, to change the logic of the reference monitor or the contents of the security kernel database. Finally, the requirement for mathematical proof is formidable for something as complex as a general-purpose computer. A system that can provide such verification is referred to as a trusted system.

Trojan Horse Defense:
One way to secure against Trojan horse attacks is the use of a secure, trusted operating system.

Figure 20.5. Trojan Horse and Secure Operating System

[image: 20fig05]

Figure 20.5 illustrates an example. In this case,
A Trojan horse is used to get around the standard security mechanism used by most file management and operating systems: the access control list.
In this example, a user named Bob interacts through a program with a data file containing the critically sensitive character string "CPE170KS." User Bob has created the file with read/write permission provided only to programs executing on his own behalf: that is, only processes that are owned by Bob may access the file.

The Trojan horse attack begins when a hostile user, named Alice, gains legitimate access to the system and installs both a Trojan horse program and a private file to be used in the attack as a "back pocket." Alice gives read/write permission to herself for this file and gives Bob write-only permission (Figure 20.5a). Alice now induces Bob to invoke the Trojan horse program, perhaps by advertising it as a useful utility. When the program detects that it is being executed by Bob, it reads the sensitive character string from Bob's file and copies it into Alice's back-pocket file (Figure 20.5b). Both the read and write operations satisfy the constraints imposed by access control lists. Alice then has only to access Bob's file at a later time to learn the value of the string.
Now consider the use of a secure operating system in this scenario (Figure 20.5c). Security levels are assigned to subjects at logon on the basis of criteria such as the terminal from which the computer is being accessed and the user involved, as identified by password/ID. In this example, there are two security levels, sensitive and public, ordered so that sensitive is higher than public. Processes owned by Bob and Bob's data file are assigned the security level sensitive. Alice's file and processes are restricted to public. If Bob invokes the Trojan horse program (Figure 20.5d), that program acquires Bob's security level. It is therefore able, under the simple security property, to observe the sensitive character string. When the program attempts to store the string in a public file (the back-pocket file), however, that is violated and the attempt is disallowed by the reference monitor. Thus, the attempt to write into the back-pocket file is denied even though the access control list permits it: The security policy takes precedence over the access control list mechanism.

Firewalls:

Definition: Firewall is software or hardware based network security system that controls the incoming and outgoing network traffic, based on applied rule set.
A fire wall establishes a barrier between a trusted secure internal network and another network.

Firewalls can be an effective means of protecting a local system or network of systems from network-based security threats while at the same time affording access to the outside world via wide area networks and the Internet.
[image:]

THE NEED FOR FIREWALLS
· Centralized data processing system, with a central mainframe supporting a number of directly connected terminals
· Local area networks (LANs) interconnecting PCs and terminals to each other and the mainframe
· Premises network, consisting of a number of LANs, interconnecting PCs, servers, and perhaps a mainframe or two
· Enterprise-wide network, consisting of multiple, geographically distributed premises networks interconnected by a private wide area network (WAN)
· Internet connectivity, in which the various premises networks all hook into the Internet and may or may not also be connected by a private WAN

FIREWALL CHARACTERISTICS

The following design goals for a firewall:
1. All traffic from inside to outside, and vice versa, must pass through the firewall. This is achieved by physically blocking all access to the local network except via the firewall. Various configurations are possible available in fire wall.
2. Only authorized traffic, as defined by the local security policy, will be allowed to pass. Various types of firewalls are used, which implement various types of security policies, as explained later in this chapter.
3. The firewall itself is immune to penetration. This implies the use of a hardened system with a secured operating system. Trusted computer systems are suitable for hosting a firewall and often required in government applications
Firewall controls:
Firewalls use to control access and enforce the site’s security policy. Originally, firewalls focused primarily on service control, but they have since evolved to provide all four:
1. Service control: Determines the types of Internet services that can be accessed, inbound or outbound. The firewall may filter traffic on the basis of IP address, protocol, or port number; may provide proxy software that receives and interprets each service request before passing it on; or may host the server software itself, such as a Web or mail service.
2. Direction control: Determines the direction in which particular service requests may be initiated and allowed to flow through the firewall.
3. User control: Controls access to a service according to which user is attempting to access it. This feature is typically applied to users inside the firewall perimeter (local users). It may also be applied to incoming traffic from external users; the latter requires some form of secure authentication technology, such as is provided in IPsec.
4. Behavior control: Controls how particular services are used. For example, the firewall may filter e-mail to eliminate spam, or it may enable external access to only a portion of the information on a local Web server.

Capabilities of firewall:
The following capabilities are within the scope of a firewall:
1. A firewall defines a single choke point that keeps unauthorized users out of the protected network, prohibits potentially vulnerable services from entering or leaving the network, and provides protection from various kinds of IP spoofing and routing attacks. The use of a single choke point simplifies security management because security capabilities are consolidated on a single system or set of systems.
2. A firewall provides a location for monitoring security-related events. Audits and alarms can be implemented on the firewall system.
3. A firewall is a convenient platform for several Internet functions that are not security related. These include a network address translator, which maps local addresses to Internet addresses, and a network management function that audits or logs Internet usage.
4. A firewall can serve as the platform for IPsec.

Limitations of Firewalls:
Firewalls have their limitations
1. The firewall cannot protect against attacks that bypass the firewall. Internal systems may have dial-out capability to connect to an ISP. An internal LAN may support a modem pool that provides dial-in capability for travelling employees and telecommuters.
2. The firewall may not protect fully against internal threats, such as a disgruntled employee or an employee who unwittingly cooperates with an external attacker.
3. An improperly secured wireless LAN may be accessed from outside the organization. An internal firewall that separates portions of an enterprise network cannot guard against wireless communications between local systems on different sides of the internal firewall.
4. A laptop, PDA, or portable storage device may be used and infected outside the corporate network, and then attached and used internally.

TYPES OF FIREWALLS:
· Packet Filtering Firewall
· Application Level Gateway
· Circuit Level Gateway
Packet Filtering Firewall:
Packet filtering firewall applies a set of rules to each incoming and outgoing IP packet and then forwards or discards the packet .The firewall is typically configured to filter packets going in both directions (from and to the internal network). Filtering rules are based on information contained in a network packet:
· Source IP address: The IP address of the system that originated the IP packet (e.g., 192.178.1.1)
· Destination IP address: The IP address of the system the IP packet is trying to reach (e.g., 192.168.1.2)
· Source and destination transport-level address: The transport-level (e.g., TCP or UDP) port number, which defines applications such as SNMP or TELNET
· IP protocol field: Defines the transport protocol
· Interface: For a firewall with three or more ports, which interface of the firewall the packet came from or which interface of the firewall the packet is destined for.
· possible default policies
Default = discard: That which is not expressly permitted is prohibited.
	Default = forward: That which is not expressly prohibited is permitted.

[image:]
[image:]

Attacks on Packet Filters
· IP address spoofing: fake source address to be trusted add filters on router to block
· Source routing attacks: attacker sets a route other than default block source routed packets.
· Tiny fragment attacks: split header info over several tiny packets, either discard or reassemble before check

Application Level Gateway (or Proxy)

•have application specific gateway / proxy
•has full access to Protocol
User requests service from proxy
Proxy validates request as legal
Then actions request and returns result to user
Can log / audit traffic at application level.
•Need separate proxies for each service
Some services naturally support proxying
Others are more problematic.

[image:]Circuit Level Gateway:
· It is a stand a-lone system or it can be a specialized function performed by an application level gate way for certain applications.
· It does not permit end to end TCP connection; this relays two TCP connections, one between itself and a TCP user on an inner host, and one between itself and TCP user on outside host.
· Once the two connections are established, the gateway typically relays TCP segments from one connection to the other without examining the content.
[image:]
Example:
	Circuit level gateway example is implementation of the SOCKS package.
SOCKS:
· This protocol designed to provide a framework for client-server application in both the TCP & UDP domains to conveniently and securely use the services of a Network firewall.
· SOCKS server, which runs on a UNIX based firewall.
· SOCKS client library, which runs on internal hosts protected by the firewall.
· The implementation of the SOCKS protocol typically involves the recompilation or re-linking of TCP-based client applications to use the appropriate encapsulation routines in the SOCKS library.
· The SOCKS service is located on TCP port 1080

Firewall Configurations

[image: Ch20. Firewall Configs.pdf 002F6F4DMacintosh HD B83AE914:]

[image: Ch20. Firewall Configs.pdf 002F6F4DMacintosh HD B83AE914:]

[image: Ch20. Firewall Configs.pdf 002F6F4DMacintosh HD B83AE914:]

Bastion Host:
A bastion host is a system identified by the firewall administrator as a critical strong point in the network's security. Typically, the bastion host serves as a platform for an application-level or circuit-level gateway. Common characteristics of a bastion host include the following:
· The bastion host hardware platform executes a secure version of its operating system, making it a trusted system.
· Only the services that the network administrator considers essential are installed on the bastion host. These include proxy applications such as Telnet, DNS, FTP, SMTP, and user authentication.
· The bastion host may require additional authentication before a user is allowed access to the proxy services. In addition, each proxy service may require its own authentication before granting user access.
· Each proxy is configured to support only a subset of the standard application's command set.

Screened host firewall:
In the screened host firewall, single-homed bastion configuration (Figure 20.2a), the firewall consists of two systems: a packet-filtering router and a bastion host. Typically, the router is configured so that
1. For traffic from the Internet, only IP packets destined for the bastion host are allowed in.
2. For traffic from the internal network, only IP packets from the bastion host are allowed out.
The bastion host performs authentication and proxy functions. This configuration has greater security than simply a packet-filtering router or an application-level gateway alone, for two reasons. First, this configuration implements both packet-level and application-level filtering, allowing for considerable flexibility in defining security policy. Second, an intruder must generally penetrate two separate systems before the security of the internal network is compromised.

This configuration also affords flexibility in providing direct Internet access. For example, the internal network may include a public information server, such as a Web server, for which a high level of security is not required. In that case, the router can be configured to allow direct traffic between the information server and the Internet.

Screened host firewall, dual-homed bastion:
In the single-homed configuration just described, if the packet-filtering router is completely compromised, traffic could flow directly through the router between the Internet and other hosts on the private network. The screened host firewall, dual-homed bastion configuration physically prevents such a security breach (Figure 20.2b). The advantages of dual layers of security that were present in the previous configuration are present here as well. Again, an information server or other hosts can be allowed direct communication with the router if this is in accord with the security policy.

Screened subnet firewall configuration:
The screened subnet firewall configuration of Figure 20.2c is the most secure of those we have considered. In this configuration, two packet-filtering routers are used, one between the bastion host and the Internet and one between the bastion host and the internal network. This configuration creates an isolated sub-network, which may consist of simply the bastion host but may also include one or more information servers and modems for dial-in capability. Typically, both the Internet and the internal network have access to hosts on the screened subnet, but traffic across the screened subnet is blocked.
This configuration offers several advantages:
· There are now three levels of defense to thwart intruders.
· The outside router advertises only the existence of the screened subnet to the Internet; therefore, the internal network is invisible to the Internet.
· Similarly, the inside router advertises only the existence of the screened subnet to the internal network; therefore, the systems on the inside network cannot construct direct routes to the Internet.

QUESTION BANK

1. Explain secure electronic commerce components in detail
2. Explain benefits of IPSec
3. Explain the SSL Record Protocol
4. Explain Web Security threats
5. Describe IP Security
6. Explain IPSec ESP format
7. Explain the IPSec Authentication Header fields with diagram
8. Explain the payment process supported in SET
9. Explain briefly the format of ISAKMP header and generic payload types
10. Briefly describe encapsulating a security payload
11. Briefly describe the features of Oakley’s key determination protocol.
12. What is WWW? What are the challenges web presents?
13. Briefly describe the dual signature in SET.
14. Briefly describe anti-replay service and integrity check value
15. Briefly describe about ISAKMP exchanges
16. Briefly explain the following:
17. i) Trapdoors ii) logic bomb iii) Trojan horse iv) Viruses
18. Explain the concept of trusted systems
19. Explain password selection procedure in detail.
20. Explain the capabilities and limitations of firewalls
21. Explain various approaches to Intrusion Detection.
22. What is a firewall? Explain packet filter router.
23. Describe different classes of Intruders.
24. Explain malicious programs
25. Describe trusted system in detail.
26. What is a firewall? Explain different types of firewalls. Explain the characteristics and capabilities of firewall?
image3.png
Read contents of
macsage from Bob
tohlicz

(a) Release of message contents

image79.png
Source A Destination B

figure 9.4 Public-Key Cryptosystem: Authentication and Secrecy

image80.png
Z=E(PUp,E(PR,. X))
X=D(PU,, D(PR,, Z))

image81.png
C=Mcmod n

M=C¢mod n

image82.png
ed mod G(n)=1

image83.png
ed=1mod @(m)

d= e mod O(n)

image84.png
ed=1mod @(m)

image85.png

image86.png
M=C¢mod n

image87.png
887 mod 187 =[(88* mod 187) x (887 mod 187)
(88! mod 187)] mod 187

88! mod 187 =88

882 mod 187 =7744 mod 187 =77

88* mod 187 = 59,969,536 mod 187 = 132
887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11

image88.png
Encryption Deeryption

Plaintext Plainext
11?9".“1@: 88— 85
T/
PR=123,187

Example of RSA Algorithm

image4.png
Otserve patiemal
massages from Bob

(h) Traffic analysis

image89.png
For decryption, we calculate M =11 mod 187:

112 mod 187 = [(11" mod 187) x (11> mod 187) x (11* mod 187)
% (11¥ mod 187) x (11* mod 187)] mod 187

11" mod 187 =11

112 mod 187 =121

114 mod 187 = 14,641 mod 187 =55

118 mod 187 =214,358,881 mod 187 =33

11 mod 187 = (11 x 121 x 55 x 33 % 33) mod 187 = 79,720,245 mod 187 = 88

image90.png
amod P, a2mod P, a* mod P, .

image91.png

image92.png
= X
Yp= 0% mod q

image93.png
Xa iq
) Mo
K= (Ys,

image94.png
K= (Y. A)B mod

image95.png

image96.png
K= (¢ modq))(Amod q

image97.png
= (¥ 3
) mod
q

image98.png
~ (@ mod
= (a q

image5.png
(a) Masquerade

image99.png
N
mod
q) mod
q

image100.png
Xs
= (va)mod q

image101.png

image102.png
> Prime number
o >primitive Root of q

Select Global public Elements

AN

User A key Generation User B key Generation

Select Private Xs, X<q Select Private X5, Xp<q

Calculate publickey Y Calculate publickey Yg
Ya= o™ mod q Y= o*® mod q

l

l

Generation of secret key by user A Generation of secret key by user B

Xa
= (Ys) mod q|

Xo

K= (Ya) mod

image103.png
User A User B

Generate random X4<q Generate random Xg<q

Y,
Calculate public key Ya / Calculate public key Yz

Ya= 6™ mod q ‘/“/ Yo ot

Calculate K

Xo

K= (Ya) mod

image104.png
User A

Generate
random X; < g;
Calculate
Yy =a*1 modg

Calculate
K=(Yp* modg

User B

2

Generate

random Xp < g;
Calculate

Y= a8 modg;
Caleulate

K= (¥)" modgq

Diffie-Hellman Key Exchange

image105.png
K2 = (Y)"”modgq.

image106.png
K1 = (Yp)**mod q.

image107.png
K1 = (Yp)**'mod q .

image108.png
K2 = (Ypy)*mod ¢

image6.png
Capture message from
Bob to Alice; later

replay message to Alice

(b) Replay

image109.png
(S

D
D

. A sends an encrypted message M: E(K2, M) .

intercepts the encrypted message and decrypts it to recover M.
sends B E(K1, M) or E(K1, M’) , where M’ is any message. In the

first case, D simply wants to eavesdrop on the communication without
altering it. In the second case, D wants to modify the message going

toB

image110.png
Yray+by=xX+col+dr+e

image111.png

image112.png
Ve +ax+ b

image113.png
y'modp = (&} + ax + b) modp

image7.png
other comms facility

(©) Modification of messages

image114.png
For example, Equation e is satisfied fora=1,b=1,x=9,y =7, a =1
p=23%
7mod23 = (9 + 9 + 1) mod 23
49 mod 23 = 739 mod 23
3=3

image115.png
Yrxy=x+al+b

image116.png
Q = kP where Q, P € Ep(a,b) and k < p.

image117.png
bal Public Elements

Eg(ab) eclliptic curve with parameters a, b, and g, where g is a
prime or an integer of the form 2

G point on elliptic curve whose order is large value n

User A Key Generation
Select private n, ny<n

Caleulate public P, P,

nyxG

User B Key Generation

Select private ny ng<n

Caleulate public Pj, Py=nyxG

Calculation of Secret Key by User A

K=n,xPy

Calculation of Secret Key by User B

K=ngxP,

ECC Diffie-Hellman Key Exchange

image118.png
na X Py =ny X (ny X G) = np X (ny X G) = np X Py

image119.png
Several approaches to encryption/decryption using elliptic curves have been ana-
lyzed in the literature. In this subsection, we look at perhaps the simplest. The first
task in this system is to encode the plaintext message m to be sent as an x-y point
P, It is the point P,, that will be encrypted as a ciphertext and subsequently
decrypted. Note that we cannot simply encode the message as the x or y coordinate
of a point, because not all such coordinates are in E,(a, b); for example, see Table
10.1. Again, there are several approaches to this encoding, which we will not
address here, but suffice it to say that there are relatively straightforward tech-
niques that can be used.

As with the key exchange system, an encryption/decryption system requires a
point G and an elliptic group E,(a, b) as parameters. Each user A selects a private
key 14 and generates a public key P4 = ny % G.

image120.png
To encrypt and send a message P, to B, A chooses a random positive integer k
and produces the ciphertext C,, consisting of the pair of points:

C, = (kG, P, + kPy)

Note that A has used B’s public key Py. To decrypt the ciphertext, B multiplies the
first point in the pair by B’s secret key and subtracts the result from the second
point:

P, + kPy — ny(kG) = P, + k(nyG) — ny(kG) = P,,

A has masked the message P,, by adding kPj to it. Nobody but A knows the
value of k, so even though P, is a public key, nobody can remove the mask kPp.
However, A also includes a “clue,” which is enough to remove the mask if one
knows the private key n5. For an attacker to recover the message, the attacker
would have to compute k given G and kG, which is assumed to be hard.

As an example of the encryption process (taken from [KOBLO4]), take
p = 751; E,(~1.188), which is equivalent to the curve y* = x* — x + 188; and
G = (0,376). Suppose that A wishes to send a message to B that is encoded in the
elliptic point P,, = (562, 201) and that A selects the random number k = 386. B’s
public key is Pg- (o1,5. We have 386(0,376) = (676,558), and (562,201) +
386(201,5) = (385,328). Thus, A sends the cipher text {(676, 538), (385, 328)).

image121.png
~<~—— Source A ——— ~<—— Destination B ——

M (E} (D} M
I E(K. M) ,f(

(a) Symmetric encryption: confidentiality and authentication

S e
PU, E(PU,, M)

PR,

(b) Public-key encryption: confidentiality

PU,
hentication and signature

»(? > M
PR, E(PRa, M)

M —(E (E (D) Omall

i i \1, \1,
p, EPRaM) py, E(PULEPRM) pp, ECPRaM) py,
(d) Public-key encryption: confidentiality, authentication, and signature

Figure 12.1

Basic Uses of Message Encryption

image122.png
~———Source A —

~——— Destination B——

-

i u —{E} D M £

i) LT \T 7o Compare
K E(K, [M I E(M)]) K
() Internal error control

K ECK M) i
M —(&) i e
——F—
EK,
(K. M) p; Compare
) FEK. M)
G

(b) External error control

Internal and External Error Control

image123.png
<~——— Source A ————> ~<———— Destination B ——

M h————u ((T:

K
71 k Comparc
| /
p /
{©) CK. M)

(a) Message authentication

- 0 M <

E
o Ky t t k, ~ Compar
(L Ky E(o IMICKL M) K2 7 1
/

1 C(Ky. M)
(b) Message authentication and confidentiality; authentication tied to plaintext

E(Ky, M)
.

K,
K> L‘ e Compare K2
’ K
/ 4
o— C(Ky, E(Ky, M)

(¢) Message authentication and confidentiality: authentication tied to ciphertext

12.4 Basic Uses of Message Authentication code (MAC)

image8.png
Internet or
other comms facility

(d) Denial of service

image124.png
v 2 o
al K K Compare
/

bl L, Lt

®

M ml»——‘u D—()
s —
L e Colpe
/

D uds

I A

K e prson ’
- 4
@ HMYS)

<112 Simplificd Examples of the Use of a Hash Function for Message Authentication

image125.png
Requirements for a Cryptographic Hash Function H

Requirement

Description

Variable input size

H can be applied to a block of data of any size.

Fixed output size

H produces a fixed-length output.

Efficiency

H(x) is relatively easy to compute for any given x,
‘making both hardware and software implementa-
tions practical.

Preimage resistant (one-way property)

For any given hash value . it is computationally
infeasible to find y such that H(y) = h.

Second preimage resistant (weak collision
resistant)

For any given block x,it is computationally
infeasible to find y # x with H(y) = H(x).

Collision resistant (strong collision resistant)

It is computationally infeasible to find any pair
(x,y) such that H(x) = H(y).

Pseudorandomness

Output of H meets standard tests for
pseudorandomness.

image126.png
Ci=bi@bp® - @ bim

where

C; = ithbit of the hash code,1 =i =n
m = number of n-bit blocks in the input
b, ith bit in jth block

= XOR operation

image127.png
Message length

Pad
(o512 bi (K mod 264)
—— «SI2bits=Nx32bits
- K bit
Message 1000
512 bit— 512 bit—
e e Vi
s12 s12 s12

128] 28 128 128 |
v Hyps [Hyps Hyps Hyips
| vy CV, CVig |

image128.png
Not: additon () smed 22

Figure 12.2 MDS Processing of a Single 512.

t Block

image129.png
We can summarize the behavior of MDS5 as follows:

CV,=1v
CV,11 = SUMy(CV, .RF|[Y, RF[Y, . RFG[Y,RF{Y,.CV,I]I})
MD = CV,,
where

IV = initial value of the ABCD buffer, defined in step 3
Y, = theqth512-bit block of the message
L = the number of blocks in the message (including padding and length fclds)
CV, = chaining variable processed with the gth block of the message
RF, = round function using primitive logical function x

MD = final message digest value
SUM,,= Addition modulo 2* performed separately on each word of the pair of inputs

image130.png
a«b+ ((a+gb,cd)+ X[k] + T[i]) <<<s)

the four words of the buffer, in a specified order that varies across steps
one of the primitive functions F, G, H, 1

circular left shift (rotation) of the 32-bit argument by s bits

Mg X 16 + k] = the kth 32-bit word in the gth 512-bit block of the
message

the ith 32-bit word in matrix T

addition modulo 2%

image131.png
Figure 9.3 Elementary MDS5 Operation (single step).

image132.png
K, WI60..75]
20 steps

Now: adison (41 mod %

Figure 125 SHA-1 Processing of a Single 512.
(SHA-1 Compression Function)

it Block.

image9.png
Tuble 12 Security Serviees (X.800)

AUTHENTICATION

“Ihe srance thtthecommunicting ety s the
s hat it claims 13 .

Peer Entty Authnsiaion
Usad i asociaton with a lgial capection o
provideccbdence in e Xty of s enies
connscid.

DataOrigin Authentiction
In connseonles ransar, provides asrpce
e sounc of received dat i e clim,

ACCESS CONTROL
“Thepreventon ofuauthorizad s of a source
(3. i i controls wha can ave kst 03
e, under what codons 6 o e,
a0 what hoss acesing th resoure ane allowed
),

DATA CONFIDENTIALITY.
“Theprtection of dota fom wanthorzed
diloars

Comecton Contdentibty

“Theprotaction fll er daa o a conicton

Comectones Confdetisiy
o prtectin fall er dat i singl cta bk,

Selctive-Field Contdently
“The confentltyof slected fislds withinthe s
data o coanection or i sngs data blck.

Tffc Flow Contdeniliy
“The protaction of e nfomaton thtmightbe
derved o obesvationof trfe .

DATA INTEGRITY

A
et by s suhonied oy (1. ot o0
moditin, nseric, deletion, o i)

Connection Ity with Bacoery
Provdes or tho ity ofall wer data ona
connectionand detctsany modication, s,
e, o repayof ay dats i an ot dats.
uence. i ey stemp.

Connection Iterty wthou Recovery
Asabore b proides cnlydeection without ecover.

Selcive-Fek Conpecion ety
Providas or tho ety of slctd s witkn the
ke dats o 3 dota ik ranered ver s connec
o ks o of et of whsther
e sekcted eld ave been o, et
ot o relayed

Connectones ety
Provdesor tho ittty o s sing conmctioness
ot block o oy ko h fomof detaction of
ot modifation Addtaaly, mited form of
Teplay detscion may b provids

Selcive-Fek Conpectionles ety
Pronids o o ity of lced ek i sl
connscteals otk ke the o of et
‘ot wthe th sehctedSekhav ben i

NONREPUDIATION
Providesprotection ganst ool by cnoof he

ot vlved i commurication o havng
particpad mall o prt of o commication.

Nowscpudiaon, Orga
Prccttht e oessge s st b s pecfod pary.

Nowscpudiaon, Desination
Proc ha the mssags wasrcsved by h specitsd
pary.

image133.png
A B C D E

Figure 12.6 Elementary SHA Operation (single step)

image134.png
v,

Yq Yq
!
LKLY, 5 KL X
16 steps 16 steps
LElchE e
'y P
B0 Ko K2 Somi)
16 steps 16steps
LElchE e
'y P
5. K5, X2 K5 Koo
16 steps 16 steps
LElchE e
'y P
£, Ka. Xon) 2K Koo
16 steps 16 5teps
LElchE e
'y P
5, Ks. Xpug) 1KE Xoemp)
16 steps 16 steps
)
e
gc
3

Noe: additon (+) s mod 232

CVgn

Figure 12.8 RIPEMD-160 Processing of a Single 512-bit Block
(RIPEMD-160 Compression Function)

image135.png
Hash

nbits

Y
[HMAC(K, M)
HMAC Structure

L[]
l bbits ___ bbits bbits
S; Yo Y, o oo Y
W ok
K nbits
opad ¥
[H(S; 11 M)
L[]
b bits Pad to b bits
Y

image136.png
the overall operation of HMAC. Define the following terms.
H = embedded hash function (e.g., MDS5, SHA-1, RIPEMD-160)
1V = initial value input to hash function

M = message input to HMAC (including the padding specified in the embed-
ded hash function)

Y; = ithblock of M,0=i=(L-1)
L = number of blocks in M

b = number of bits in a block

n = length of hash code produced by embedded hash function

K = secret key; recommended length is = if key length is greater than b,
the key is input to the hash function to produce an 7-bit key

image137.png
K*

= K padded with zeros on the left so that the result is b bits in length

ipad = 00110110 (36 in hexadecimal) repeated b/8 times
opad = 01011100 (5C in hexadecimal) repeated b/8 times

RS

2

]

Then HMAC can be expressed as
HMAC(K, M) = H[(K* @ opad) Il H[(K* @ ipad) Il M]]

‘We can describe the algorithm as follows.

Append zeros to the left end of K to create a b-bit string K* (e.g. if K is of
length 160 bits and b = 512, then K will be appended with 44 zeroes).

XOR (bitwise exclusive-OR) K* with ipad to produce the b-bit block S;.
Append M 10 S,.

Apply H to the stream generated in step 3.

XOR K* with opad to produce the b-bit block S,

Append the hash result from step 4 to S,
Apply H to the stream generated in step 6 and output the result.

image138.png
®

M)————¥
PR, . PU, Compare
7
| / t

/
E(PR,, H(M)]

(a) RSA approach

PUGPU,

L= (Ver - compae

(b) DSS approach
re 13.3 Two Approaches to Digital Signatures

image139.png
Global Public-Key Components

prime number where 28~ ! < p < 2L

for 512 = L = 1024 and L a multiple of 64;
iic., bit length of between 512 and 1024 bits
in increments of 64 bits

prime divisor of (p — 1), where 2'% < g < 2'90;
i.e.. bit length of 160 bits

— K~ Y mod
where h is any integer with | < h < (p — 1)
such that A%~ Y4 mod p > 1

r = (g"modp) mod g
s =[k"" (HM) + x)] mod ¢
Signature = (7 5)

Verifying
w =)' modg
up = [HM)w] mod ¢

uy = ()wmod g
User’s Private Key v =[(g"'y**) mod pl mod ¢
random or pseudorandom integer with 0 < x < g TEST:v=1r
User’s Public Key M = message to be signed

=g modp

User's Per-Message Secret Number

= random or pseudorandom integer with 0 < & < ¢

The Digital Signature Algorithm (DSA)

H(M) = hash of M using SHA-1

M, r',s" = received versions of M. r, s

image140.png
(1) C—AS: ID¢|Pc|IDy
(2) AS—C: Ticket
() C—V: ID(|Ticket
Ticket = E(K,, [ID¢||AD¢||IDy])
where
C =client
AS = authentication server

V= server
1D = identifier of user on C

IDy = identifier of V

P = password of user on C

AD¢ = network address of C

K, = secret encryption key shared by AS and V

image141.png
Once per user logon session:

(1) C—>AS: ID(|ID,,
() AS—C: E(K.., Ticket,,)

Once per type of service:

(3) C—>TGS: ID(||IDy| Ticket,,,
@) TGS—C: Ticket,

Once per service session:

() C—V: D¢ Ticket,

Ticket,g, = E(Kigys [IDC|| ADC||ID || TS, | Lifetime])
Ticket, = E(K,.[ID¢| ADc|ID,|[TS, | Lifetime,])

image142.png
Ticket,g,

image143.png
(Kigs)

image144.png
1. User logs on to
workstation and
requests service on host.

2. AS verifies user's access right in
database, creates ticket-granting ticket
and key. Results are encrypted
using key derived from user's password.

Kerberos

Authentication
server (AS)

4. TGS decrypts ticket and
authenticator, verifies request,
then creates ticket for requested

6. Server verifies that
ticket and authenticator
match, then grants access
10 service. If mutual
authentication is
required, server returns
an authenticator.

image145.png
Summary of Kerberos Version 4 Message Exchanges

(1) C—AS ID D I TS,
@) AS—C E(Ko [Ke oI Dy 1 TS, I Lietimey | Ticketys])
Tickety = E(Kigo [Ky, g | DI ADI ID,g, 1 TS, | Lifetimes])

(a) Authentication Service Exchange to obtain ficket-granting

() C—TGS 1D, I Tickety, | Authenicator,
@) TGS—C E(K, g [Ke,, 1D, | TS, Ticker,))
Ticketis = E(Kg [Ke, s | IDC1I ADC | IDg 11'TS, 1 Lifetimes])
Ticket, = E(Ky [Ke.o/| IDC1| ADCI D, I TS, | Lifetimes])

Authenticator, = E(Kc i, [ID | AD 11 TS3])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

®) C—V Ticket, I Authenticator,
(© V=€ E(K, [7S5 + 1)) (for mutual authentication)
Ticket, = E(Ks, [Kq | DIl ADC 1 D, I TS, Lifetime])
Autenticator, = E (K. ,, [IDc| AD 1 TSg])

(¢) ClientServer Authentication Exchange to obtain service

image146.png
Rationale for the Elements of the Kerberos Version 4 Protocol

Message (1) Client requests ticket-granting ticket.

ID¢ Tells AS identity of user from this client.

1Dy, Tells AS that user requests access to TGS.

TS, Allows AS to verify that client’s clock is synchronized with that of AS.

Message (2) AS returns ticket-granting ticket.

K. Encryption is based on user’s password, enabling AS and client to verify
password, and protecting contents of message (2).

Ke g Copy of session key accessible to client created by AS to permit secure
exchange between client and TGS without requiring them to share a
permanent key.

1Dy, Confirms that this ticket is for the TGS.

TS, Informs client of time this ticket was issued.

Lifetime, Informs client of the lifetime of this ticket.

Ticket,y, Ticket to be used by client to access TGS.

(a) Authentication Service Exchange

image147.png
Message (3)
Dy
Ticketygs
Authenticator,
Message (4)
Ko
K,

Dy
75,
Tickety
Ticket,y,
K,

1gs

Ko rgs

IDe
ADc¢

Dy,
Ts,
Lifetime,

Authenticator,

K,

cags

IDc
AD¢
TS,

Client requests service-granting ticket.
Tells TGS that user requests access to server V.

Assures TGS that this user has been authenticated by AS.
Generated by client to validate ticket.

TGS returns service-granting ticket.

Key shared only by C and TGS protects contents of message (4).

Copy of session key accessible to client created by TGS to permit secure
exchange between client and server without requiring them to share
a permanent key.

Confirms that this ticket is for server V.
Informs client of time this ticket was issued.
Ticket to be used by client to access server V.

Reusable so that user does not have to reenter password.

Ticket is encrypted with key known only to AS and TGS, to prevent
tampering.

Copy of session key accessible to TGS used to decrypt authenticator,
thereby authenticating ticket.

Indicates the rightful owner of this ticket.

Prevents use of ticket from workstation other than one that initially
requested the ticket.

Assures server that it has decrypted ticket properly.
Informs TGS of time this ticket was issued.
Prevents replay after ticket has expired.

Assures TGS that the ticket presenter is the same as the client for whom
the ticket was issued has very short lifetime to prevent replay.

Authenticator is encrypted with key known only to client and TGS, to pre-
vent tampering.

Must match ID in ticket to authenticate ticket.
Must match address in ticket to authenticate ticket.

Informs TGS of time this authenticator was generated.

(b) Ticket-Granting Service Exchange

image148.png
Message (5)
Tickety
Authenticator,

Message (6)

Koy

TS + 1
Ticket,

IDc
AD¢

Dy
TS,
Lifetime,

Authenticator,

K,

IDc
AD¢
TS5

Client requests service.

Assures server that this user has been authenticated by AS.
Generated by client to validate ticket.

Optional authentication of server to client.

Assures C that this message is from V.

Assures C that this is not a replay of an old reply.

Reusable so that client does not need to request a new ticket from TGS
for each access to the same server.

Ticket is encrypted with key known only to TGS and server, to prevent
tampering.

Copy of session key accessible to client; used to decrypt authenticator,
thereby authenticating ticket.

Indicates the rightful owner of this ticket.

Prevents use of ticket from workstation other than one that initially
requested the ticket.

Assures server that it has decrypted ticket properly.
Informs server of time this ticket was issued.
Prevents replay after ticket has expired.

Assures server that the ticket presenter is the same as the client for whom
the ticket was issued; has very short lifetime to prevent replay.

Authenticator is encrypted with key known only to client and server, to
prevent tampering.

Must match ID in ticket to authenticate ticket.
Must match address in ticket to authenticate ticket.

Informs server of time this authenticator was generated.

image149.png
(1) C— AS: ID 1 ID,, I TSy
2) AS—C: E(Ke. [Ke, 5 1 1Dy, 1| TS, | Lifetimes l Ticket,))
(3) C=TGS: IDygyup Il Tickety, | Authenticator,

@) TGS—=C: E(Keign [Ke.tgsram I IDsgrem 1| TS5 | Ticketygyem])
(5) C=TGS e 1Dy Ticketygre, | Authenticator,

(6) TGS.em— C: E(Kesgrems [Ke.sram I 1D, e | TS5 | Ticket, o)
(1) C—=Vyew: Tickelyyop | Authenticator,

image150.png
Kerberos

TGS |
1 pest S s AS
yﬁj‘i"ﬂ'&”ﬁgmm
S — e T

SN R T L

52 Request for Service in Another Realm

image151.png
Summary of Kerberos Version 5 Message Exchanges

(1) C—AS Options I 1D, Realm, 11D, | Times | Nonce,

@ AS=C Realm! IDI Ticketys E(Ko [Kegs| Times || Noncey | Realmis | IDg))
Tickety, = E(K,y. [Flags | K.y, | Ream, | ID¢ | AD! Times])

(@) Authentication Service Exchange (o obtain tcket-graning ticket

@) C—TGS Options 11D, Times | Noncey | Ticket, | Authenticaior,
@ TGS—C Realml\ IDCI Ticket, I E(K s K.y 1 Times | Nonces | Realm, 1 1D,])
Tickety, = E(Kign [Flags | Koy, | Realm, I IDC| DI Times])
Ticket, = E(K, [Flags | K,, | Realm, | D I| AD.I Times])
Authenticaior, = E(K, , [IDc) Realm, I TS,])

(b) Ticket-Granting Service Exchange to obtain service-graning ticket

& C—V Options I Ticket, I Authenticaor,
® V=C Eg [T5;0subkey i Seq#]
Ticket, = E(K,, [Flag I K., | Realm, | D 1| ADI Times])
Authenicator, = (K., [ID Relam, TSI ubkey 1 Seq])

(@) Client/Server Authentication Exchange to obain service

image152.emf

image10.png
Secret key shared by Secret key shared by
e e e i e
i i
o —
x ey
> @ d @ >
Y=EK,X) X=DIK, Y]
Encrypion goram Deceyptonlgoritm
e AES (rovrse o encypton
oo

Simplified Model of Symmetric Encryption

image153.emf

image154.emf

image155.emf

image156.emf

image157.emf

image158.png
Certificate/CRL retrieval "
End entity

Registration,
initialization.
cortmeation,
key pair recovery,
key pair update

revocation reques

Certificate/CRL
publication

Certificate/CRL Repository

CRL
publication

PKI
management
entitie

PKIX Architectural Model

image159.png
- Source A >
EIPR,. HOD]

Destination B

(a) Authentication only

image160.png
session key used in symmetric encryption scheme

private key of user A, used in public-key encryption scheme
= public key of user A, used in public-key encryption scheme
= public-key encryption

public-key decryption

symmetric encryption

symmetric decryption

= hash function

= concatenation

compression using ZIP algorithm

conversion to radix 64 ASCII format'

image161.png
E[PUp, K]

Source A > ~ -
PU

K,

- —®) —r)
M
@—~E—

(b) Confidentiality only

image11.png
Secure channel

Model of Symmetric Cryptosystem

image162.png
Source A

pu, EPULK]

EC 0

(c) Confidentiality and authentication

Destination B

E[PR,. HO)]

image163.png
Architecture

AH
Protocol

| Encryption
Al

Igorithm

| Authentication
I Algorithm

Management|

image164.png
Access control

Connectionless integrity

Data origin authentication
Rejection of replayed packets
Confidentiality

Limited traffic flow confidentiality

AH ESP (encryption ESP (encryption plus
onl authentication)
v v v
v v
v v
v v v
v v
v v

image165.png
Bit: 0 8 16 31

Next Header | Payload Length RESERVED

Security Parameters Index (SPI)

Sequence Number

Authentication Data (variable)

image166.png
<Confdentility Coverage >

H

Secrity ParamotersIndo (SPI)

Sequence Number

<—— Ruthemticated Covorage ——»-

Payload Data (Vaiabl)

Padding (0255 Byts)

Pad Length

NextLongth

Authestication Data Varable)

image167.png
ESP w/o Authentication

SPL (Security Paraneters Index)
Sequence Nober

Encrypted
Payload
(variable)
padding .
e—————s1 bits————>|

ESP Header

ESP Trailer

ESP with Authentication

ST (security Paraneters Index)
Sequence Nusber

Encrypted
Payload

(variable)

padding
(variable)

Authentication Data

Y

ESP Header

ESP Trailer

image168.png
Bit: 0 8 16

Initiator cookie

Responder cookie

Exchange type

31

Message ID

' Length

(a) ISAKMP header

image169.png
Payload length

(b) Generic payload header

image170.png
‘A Comparison of Threats on the Web

Threats Conscquences Counterme:
Integrity * Modification of user data « Loss of information Cryptographic
« Trojan horse browser « Compromise of machine E=ct
« Modification of memory « Vulnerabilty to all other
« Modification of message threats
traffic in transit
Confidenti + Eavesdropping on the net * Loss of information Encryption, Web
« Theft of info from server « Loss of privacy proxies
« Theft of data from client
« Info about network
configuration
« Info about which client
talks to server
Denial of « Killing of user threads « Distuptive Difficult to prevent
Service « Flooding machine with « Annoying
A EIES « Prevent user from getting
« Filling up disk or memory work done
« Isolating machine by DNS
attacks
Authentication | o Impersonation of legitimate | e Misrepresentation of user Cryptographic
users « Belief that false information techniques
« Data forgery is valid

image171.png
SSL | SSL Change
Handshake | Cipher Spec Slf";‘A'T
Protocol Protocol oc0!
SSL Record Protocol
TCP

P

Figure 16.2 SSL Protocol Stack

image12.png
ntext (2w bits)

o bits i whits Ry

l——

Round 1

Round i

T

]
£

Round 1

e

R

1

Ciphertext (2w bits)

image172.png
Application data

Fragment

Compress

Add MAC

Enerypt

Append SSL
record header

SSL Record Protocol Operation

image173.png
SSL Handshake Protocol Message Types

Message Type

Parameters

hello_request
client_hello
server_hello
certificate
server_key exchange
certificate_request
server_done
certificate_verify
client_key exchange

f£inished

null
version, random, session id, cipher suite, compression method
version, random, session id, cipher suite, compression method
chain of X.509v3 certificates

parameters, signature

type, authorities

null

signature

parameters, signature

hash value

image174.png
Server

Phase 1
Establish security capabilites,including
protocol version, session ID, cipher suite,
‘compression method, and iniial random.
fumbers.

Phase 2
Server may send certificate, key exchange,

‘and request centifcate. Server signals end
of hello message phase.

2

Phase 3
Client sends certificate if requested. Client
sends key exchange. Client may send
certificaie verification.

Phase 4
Change cipher suite and finish
handshake protocol.

Note: Shaded transfers are

‘optional or situation-dependent.
messages that are not ways sen.

wure 166 Handshake Protocol Action

image175.png
seed

secret—| HMAC

AD)

secret — HMAC

seed

]

secret —| HMAC

AR)

secret —» HMAC

seed

secret —» HMAC

AG3)
A+ seed

secret —» HMAC

image176.png
HMAC hash (MAC write secret, seq num || TLSCompressed.type ||
TLSCompressed.version || TLSCompressed.length ||
TLSCompressed.fragment)

image177.png
P hash(secret, seed) = HMAC hash(secret, A(1) || seed) ||
HMAC hash(secret, A(2) || seed) ||
HMAC hash(secret, A(3) || seed) || ...

where A()isdefined as

2(0)

aA(i)

seed
HMAC hash (secret, A(i - 1))

image178.png
Merchant

Cardholder

Certificate
Authority

Payment
Network

Acquirer Payment
Gateway

image179.png

image180.png
Probability Profile of

density function horized
Profile of authorized user
e behavior

intruder behavior

N

Overlap in observed
or expected behavior

T T >
Average behavior Average behavior Measurable behavior
of intruder of authorized user parameter

Figure 20.1 Profiles of Behavior of Intruders and Authorized Users

image181.png
salt password

Password File
Userid salt E(pwd, [salt, 0])

11 characters

(a) Loading a new password

Password File
Userid salt E(pwd, [salt, 0])

Userid

Select password

hashed password
compare

(b) Verifying a password
Figure 20.4 UNIX Password Scheme

image13.png
encrypuon process
LEg = REy5
REjs = LEis® F(REss. Ki)

RE; = LE; 1®F(RE; 1. K;)

image182.png
Malicious Program

/
/
Need host program Independent
Trap doors Logic Trojan Viruses Bacterial ‘Worms
bombs horses | -

N

Replicate

image14.png
On the decryption side,
LD, = RD, = LE;; = RE;5
RD, = LDy® F(RDy. K15)
= REs® F(RE;s, K1)
= [LE;s® F(RE;s, Ki5)] ® F(RE s, K16)

image183.jpeg
Process]

Process2

Programl SegmentA SegmentB
Read Read
Exceute Wite

Read

() Access matrix

Access control list for Program1:
Process! (Read, Execute)

Access control list for SegmentA:

Process! (Read, Write)

Access control list for SegmentB:
Process2 (Read)

(b) Access control st

Capability list for Process1:
Program! (Read, Execute)
SegmentA (Read, Write)

Capability list for Process:
Segment B (Read)

(c) Capability list

image184.jpeg
Subjects

Reference
monitor
(policy)

Objects

image185.jpeg
D T sy [2¥ =

m—C

image186.png
Internal (protected) network) External (untrusted) network
(e.g., enterprise network) Firewall (e.g., Internet)

(a) General model

image187.emf

image188.png
B

D

Packet-Filtering Examples

action ourhost port theirhost port comment

block O E SPIGOT g we don't trust these people

allow OUR-GW 25 * * connection to our SMTP port
action ourhost port theirhost port comment

block C C * . default

action ourhost port theirhost port comment

allow C C] 25 connection to their SMTP port
action sre port dest port flags comment
allow {our hosts} D 0 25 our packets to their SMTP port
allow * 25 * * ACK | their replies

action src port dest port flags comment
allow {our hosts} » 0 » our outgoing calls
allow . . . 0 ACK | replies to our calls
allow * L * >1024 trafficto nonservers

image189.emf

image190.emf

image191.png
Bastion

« tTat
—

g ._I T *
:

a ?? Private

0 Screened-subnet irewall system

Figure 20.2 Firewall Configurations

image15.png
64

Kl%

DES

Plaintext P

Ciphertext C
Key K
c
>
64

image16.png
from 1 to 64 bits leave/neglect
multiple of 8 (8, 16, 24, 32, 40, 48,

§ § 56, 60) bit positions v
64-bit plaintext 56-bit key
Initial Permutation Permuted choice 1
T K, Stbis
Round 1 o] Permuted choice 2 w1 Left circular shift
e e g,
Round 2 Fwee] Permuted choice 2 w1 Left circular shift
32bits i 32bits pébits
! Kis - - e
Round 15 o] Permuted choice 2 ww1 Left circular shift
. g
Round 16 o] Permuted choice 2 w1 Left circular shift
S0 e
32 bit Swap
o
Inverse Permutation
64-bit ciphertext

Figure : Flow Diagram of DES algorithm for encrypting data.

image17.png
Permutation Tables for DES

(@) Initial Permutation (IP)
s 0 o M 2% 18 0 2
0 » 4 s 3 2 u 4
@ s 46 B N 2 1 6
o % 48 o » U 6 8
s ® wa m 23 w9 1
% s o4 3 27 1 u 3
646 s 45 ¥ o a B S
8 s 4 ® n B 157
(b) Inverse Initial Permutation (IP~!)
0 8 48 16 % #4602
» 7 @ 15 s B & 3
R T)
¥ s &5 B 8 A 6 0»
% 4 @4 B 0 2 0 B
3 3 48 n s 1 % 7
% 2 @2 10 % 18 % %
B 1 a4 9 ® w5 >
(¢) Expansion Permutation (E)

ENEE 2 3 4] s

o T A B

s 0w ou n|nB

2| B3 4 15 6 |0

6 |7 18 1w | on

2 |21 =2 B ou |

P I T A N)

2 | » w m m | 1
® 7 0 a »®» B B 0
1155 0® % s 18 3 1
2 8 w w m oz 3 9
v 1B % 6 » n 4 2

image18.png

image19.png
If we then take the inverse permutation
Y = IP(X) = IP"'(IP(M)).it can be
seen that the original ordering of the bits is restored.

image20.png
Li=Riy
R =L ®F(Ri-1, K))

image21.png
<— 28 bits—>

~<— 28 bits —>

~— 32bits —

~— 32bits —

1

1

]

1

¢ :Single Round of DES Algorithm

image22.png
[Fezew

&

) (&) () 1) ()

Tbits

3.7 Caleulation of F(R,K)

image23.png
C = E(K,. E(Ky, P))

image24.png
P = D(Ky.D(K;, C))

image25.png
K, K,
. @ X{b -c

Encryption
Kz Kl
c é) x d:) -
Decryption

(a) Double Encryption

image26.png
E(Ky. E(Ky. P)) = E(K3, P) (©6.1)

image27.png
C = E(K,. E(K;. P))
then (see Figure 6.1) y — E(Ky. P) = D(K,, C)

image28.png
Encryption
Ky Ky Ky
Decryption

(b) Triple encryption

image29.png
€ = E(Ky, D(Ky, E(K1, P))
P = D(Ky, E(Ky, D(K,. C)))

image30.png
C = E(K3.D(K;, E(K;. P)))

image31.png
Figure 6.3

(a) Encryption
—

K

I—> Deerypt e

(b) Decryption
Electronic Codebook (ECB) Mode

Enerypt

image32.png
ECB

G = E(K.P)

P;=D(K.C)

image33.png
Enerypt

(a) Encryption

(b) Decryption
Figure 6.4 Cipher Block Chaining @E@ Mode

image34.png
¢, = E(K. [P, @ 1V]) Py =DK.C)@IV

G =EK.[P,@®Cl) j=2..N | P,=D(K.C)@®Cpy j=2.....N

image35.png
Tregister

Tregister
b —s bits |5 bits

b —s bits s bits

s bits s bits
(a) Encryption

Tregister
bits |5 bits

nerypt

s
(b) Decryption
Figure 6.5 s-bit Cipher Feedback (CFB) Mode

image36.png
CFB

L=

5 = LSBy () | Gy =2

0 = E(K.1)
C; = P;@MSB,(0)

L =1
I; = LSBy (1) [Gy j
0, = E(K.1) i

@ MSB,(0)

image37.png
(b) Decryption
Output Feedback (OFB) Mode

image38.png
OFB

I, = Nonce

1= 05, ji=2
0, =E(K.I) j

G=P®O;, j=1
C;v = Py @ MSB,(Oy)

1, = Nonce

I = LSBys(l-) | G
0; = E(K. 1)
Pi=G@0;

Py = Cy@ MSB,(Oy)

image39.png
K

K

Counter

|

Encrypt

K

Encrypt

3T

(@) Eneryption

Counter 2

|

K

Encrypt

=

(b) Deeryption

reN-1
K —p] Enerypt
Py
Cy
K —p| Encrypt

image40.png
wre 6.7 Counter (CTR) Mode

G
a

PEEKT) -1

P MSBE(K. Ty)]

-1

= GEEKT)
Fi = G MSBEK. Ty

image41.png
128 bit

!
IDEA

Plaintext P
“iphertext ©
Key K

image42.png
[DREE

b 72
Round 8 :
fe— 2o

o

Output Transformatio

e Jw [w

|

it cpherest ¥
B Oversll IDEA Structure,

image43.png
. Multiply X, and the first sub key Z,.

. Add X, and the second sub key Z,.

. Add X; and the third sub key Z.

. Multiply X, and the fourth sub key Z,

. Bitwise XOR the results of steps 1 and 3.

. Bitwise XOR the results of steps 2 and 4.

. Multiply the result of step 5 and the fifth sub key Zs.
. Add the results of steps 6 and 7.

9. Multiply the result of step 8 and the sixth sub key Z.
10. Add the results of steps 7 and 9.

11. Bitwise XOR the results of steps 1 and 9.

12. Bitwise XOR the results of steps 3 and 9.

13. Bitwise XOR the results of steps 2 and 10.

14. Bitwise XOR the results of steps 4 and 10.

[e R S

image44.png
20 Bz 2 2,0
70 [e,

Fig.1: The IDEA structure

image45.png

image46.png
P, p, =Epg[0]

image47.png

image48.png
S0 S1 =EpslPy; [Pyl

Siase Sazss = EpslSiae 1 84253)

image49.png
P, Py =Epsl0]

Py By =EpslP[P
P Py =EpglPis H Pyl
S0 S1 =EpslPy; It Pyl

Syasa Sazss = EpslSize | Si253

image50.png

image51.png
Plaintext (64 bir)

LEo 32 its l 32 bits

Round 1 RE«
b |
s F)
]‘El. A RE;
Round 16 i
By) i
| F ()
e W
|]
Py [P, D
LE;7 REp

Ciphertext (64 bits)

Ciphertext 64bits)

15 e o fuu
Round 1
Pl& @

JF Npe)
LD.><M,
Round 16
P,__’ é
FI—{&
LDyg RD;6
[)
p,—{® P, —[®
I
LD1; RDy;

1
Plaintext (64bits)

image52.png
Figure Blowfish Encryption and Decryption.

image53.png
for|=1 to 16 do
RE; = LE;, ® P;
LE. = F[RE]®RE, .
LE. = RE. ® Py
RE. = LE. @ P;

image54.png
Figure

Detail of Single Blowfish Round.

image55.png
Fla,b, ¢, d,] = (S, +S;5) ©S30) + Sy

image56.png
for j=1to 16 do
RD.= LD © Py
1D. = F[RD] @ RD, 2
RD. @ P

LD.. ® Py

image57.png

image58.png
L, || R, = Plaintext
fori = 1to 16 do
Li=R_3
Ri=L;®F[R.,, Km. Kr]
Ciphertext = Ryq | Ly

image1.png
B G PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY

GPCET accredited by Naac with ‘a° Grade of UGC, Approved by AICTE, New Delhl & Permanently Affiliated to JNTUA, Ananthapuramu
(Recognized by UGC under 2(f) & 12(B) & IS0 5001 : 2008 Certified Institution)

Pocarganire s
% Nandikotkur Road, Venkayapalll, Kurnook518452

image59.png
Rounds 14.7.10. 13. 16

Rounds 2,5.8, 11, 14

(®m. + R;) <<<Kr)
(1) ® $2[1b]) = S3{Ie]) + S4[1d]

Rounds 3,6, 9,12, 15

1= (®m O R,,)<<<Ke)
F = ((S![1a] = S2{Ib]) + S3(1c]) & S4{ld]

(. Repss<ro

((S1[Ia] + S2[1b]) & S3[Lc]) = S4[1d]

image60.png
Lig K Ky Ri-y
F [
», l »
<<<
¥
S-box | Sbox 2 fsboss' [sbexs

Figure .14 Detail of Single CAST-128 Round.

image61.png
Round |

Round 9

Add round key

Tnverse sub bytes

Substitute bytes

3

Shift rows

3

Mix columns.

Add round key

Substitute bytes.

+

Shift rows’

Add round key

hertest

—

1 w36, 39]

—

w40, 43]

i)

Tnverse shift rows

T

Inverse shift rows

Tnverse mix cols

Round 10

Round 1

image62.png
Figure 7.1: Overall structure of the AES algorithm.

image63.png
ing | i [ing | in o o [z
i | ing | i | imy s 0 |92 5
in | iny i ins N
iny | iny ingg S0 | o [Sz [520
ko | 6] b
Agan

| v [Seal] v
K| & 0| ke
Ay | Ky | A | kis

Subey |

() Key and expanded key

R <. [- outy | out, | out [out,
5ia | 510 [2] 10 outy | outg
>
520 | 520 |22 520 outy | out,
B0 s |88 - outy | outy

(@) Input, state areay, and output

| v

image64.png
S-box

Figure 7.3:‘ Substitute Bytes Stage of the AES algorithm.

image65.png

image66.png

image67.jpeg

image68.jpeg

image2.jpeg
H i
—;.JEmw.!iw« i

AT

image69.jpeg

image70.jpeg
GCD@,n)=1, and (% (modn)=a ~ (modn)

where (%) s the Jacobi symbol

image71.jpeg
(AD) Closure under additon:
(A2) Associativiy of addition:
(A3) Additive identiy:

(A4) Additive inverse:

Abelian group

(AS) Commutativity of addition:
(M1) Closure under mltiplication:
(M2) Associativiy of multiplication
(M3) Distributive laws:

Commutative ring

£
E
H
£
¢
i

(M4) Commutaivity of multiplication:
(M5) Muliplicative identiy:

(M6) No zero divisors:

(M7) Multiplictive inverse:

image72.png
Joy

T

PR, | Alice’s private

key
ciphertest I)II’R v
>
Y=EIPU,. X]
Plaintext P -« ption algorithm Decryption algorithm 1 4intext

input output

(e RSA)

Bob (a) Encryption with public key

image73.png
Source A

Y= EIPU, XT

PU,

Public-Key Cryptosystem: Secrecy

image74.png
Y =E(PUy, X)

image75.png
X=D(PRp.Y)

image76.png
Alice's
public key
ring

Joy

ELO

PR, | Bob's private
key

Y Transmitted
ciphertext
>
Y =E[PRy. X]

Plaintext " N N ! Plaintext
input Encryption algorithm Decryption algorithm awpat

(e.g. RSA)

Bob (b) Encryption with private key Alice

image77.png
Cryptanalyst.

Decryption
Y=E[PR,. X] algorithm

Public-Kev Crvptosystem: Authentication

image78.png
Y =E(PR,, X)
X=D(PU,,Y)

