

UNIT - V
Checkpoints of the process: Major mile stones, Minor Milestones, Periodic status

assessments.

Iterative Process Planning: Work breakdown structures, planning guidelines, cost and

schedule estimating, Iteration planning process, Pragmatic planning.

9. Checkpoints of the process

Three types of joint management reviews are conducted throughout the process:

1. Major milestones. These system wide events are held at the end of each
development phase. They provide visibility to system wide issues, synchronize
the management and engineering perspectives, and verify that the aims of the
phase have been achieved.

2. Minor milestones. These iteration-focused events are conducted to review the
content of an iteration in detail and to authorize continued work.

3. Status assessments. These periodic events provide management with frequent and
regular insight into the progress being made.

Each of the four phases-inception, elaboration, construction, and transition consists of one or
more iterations and concludes with a major milestone when a planned technical capability is
produced in demonstrable form. An iteration represents a cycle of activities for which there is
a well-defined intermediate result-a minor milestone-captured with two artifacts: a release
specification (the evaluation criteria and plan) and a release description (the results). Major
milestones at the end of each phase use formal, stakeholder-approved evaluation criteria and
release descriptions; minor milestones use informal, development-team-controlled versions of
these artifacts.
Figure 9-1 illustrates a typical sequence of project checkpoints for a relatively large project.

MVR CSE

9.1 MAJOR MILESTONES

The four major milestones occur at the transition points between life-cycle phases. They can
be used in many different process models, including the conventional waterfall model. In an
iterative model, the major milestones are used to achieve concurrence among all stakeholders
on the current state of the project. Different stakeholders have very different concerns:

 Customers: schedule and budget estimates, feasibility, risk assessment,
requirements understanding, progress, product line compatibility

 Users: consistency with requirements and usage scenarios, potential for
accommodating growth, quality attributes

 Architects and systems engineers: product line compatibility, requirements changes,
trade-off analyses, completeness and consistency, balance among risk, quality, and
usability

 Developers: sufficiency of requirements detail and usage scenario descriptions, .
frameworks for component selection or development, resolution of development
risk, product line compatibility, sufficiency of the development environment

 Maintainers: sufficiency of product and documentation artifacts, understandability,
interoperability with existing systems, sufficiency of maintenance environment

 Others: possibly many other perspectives by stakeholders such as regulatory
agencies, independent verification and validation contractors, venture capital
investors, subcontractors, associate contractors, and sales and marketing teams

Table 9-1 summarizes the balance of information across the major milestones.

MVR CSE

Life-Cycle Objectives Milestone
The life-cycle objectives milestone occurs at the end of the inception phase. The goal is to
present to all stakeholders a recommendation on how to proceed with development, including
a plan, estimated cost and schedule, and expected benefits and cost savings. A successfully
completed life-cycle objectives milestone will result in authorization from all stakeholders to
proceed with the elaboration phase.

Life-Cycle Architecture Milestone
The life-cycle architecture milestone occurs at the end of the elaboration phase. The primary
goal is to demonstrate an executable architecture to all stakeholders. The baseline
architecture consists of both a human-readable representation (the architecture document)
and a configuration-controlled set of software components captured in the engineering
artifacts. A successfully completed life-cycle architecture milestone will result in
authorization from the stakeholders to proceed with the construction phase.

MVR CSE

The technical data listed in Figure 9-2 should have been reviewed by the time of the lifecycle
architecture milestone. Figure 9-3 provides default agendas for this milestone.

MVR CSE

Initial Operational Capability Milestone
The initial operational capability milestone occurs late in the construction phase. The goals

are to assess the readiness of the software to begin the transition into customer/user sites and

to authorize the start of acceptance testing. Acceptance testing can be done incrementally

across multiple iterations or can be completed entirely during the transition phase is not

necessarily the completion of the construction phase.
Product Release Milestone

The product release milestone occurs at the end of the transition phase. The goal is to assess
the completion of the software and its transition to the support organization, if any. The
results of acceptance testing are reviewed, and all open issues are addressed. Software
quality metrics are reviewed to determine whether quality is sufficient for transition to the
support organization.

MVR CSE

9.2 MINOR MILESTONES

For most iterations, which have a one-month to six-month duration, only two minor
milestones are needed: the iteration readiness review and the iteration assessment review.

 Iteration Readiness Review. This informal milestone is conducted at the start of
each iteration to review the detailed iteration plan and the evaluation criteria that
have been allocated to this iteration .

 Iteration Assessment Review. This informal milestone is conducted at the end of
each iteration to assess the degree to which the iteration achieved its objectives
and satisfied its evaluation criteria, to review iteration results, to review
qualification test results (if part of the iteration), to determine the amount of
rework to be done, and to review the impact of the iteration results on the plan for
subsequent iterations.

The format and content of these minor milestones tend to be highly dependent on the project
and the organizational culture. Figure 9-4 identifies the various minor milestones to be
considered when a project is being planned.

9.3 PERIODIC STATUS ASSESSMENTS
 Periodic status assessments are management reviews conducted at regular intervals
(monthly, quarterly) to address progress and quality indicators, ensure continuous attention to
project dynamics, and maintain open communications among all stakeholders.
Periodic status assessments serve as project snapshots. While the period may vary, the
recurring event forces the project history to be captured and documented. Status assessments
provide the following:
 A mechanism for openly addressing, communicating, and resolving management

issues, technical issues, and project risks

 Objective data derived directly from on-going activities and evolving product
configurations

 A mechanism for disseminating process, progress, quality trends, practices, and
experience information to and from all stakeholders in an open forum
Periodic status assessments are crucial for focusing continuous attention on the evolving

health of the project and its dynamic priorities. They force the software project manager to
collect and review the data periodically, force outside peer review, and encourage

MVR CSE

dissemination of best practices to and from other stakeholders.

The default content of periodic status assessments should include the topics identified in

Table 9-2.

10. Iterative process planning

A good work breakdown structure and its synchronization with the process framework are
critical factors in software project success. Development of a work breakdown structure
dependent on the project management style, organizational culture, customer preference,
financial constraints, and several other hard-to-define, project-specific parameters.
A WBS is simply a hierarchy of elements that decomposes the project plan into the discrete
work tasks. A WBS provides the following information structure:
 A delineation of all significant work

 A clear task decomposition for assignment of responsibilities

 A framework for scheduling, budgeting, and expenditure tracking

Many parameters can drive the decomposition of work into discrete tasks: product

subsystems, components, functions, organizational units, life-cycle phases, even geographies.

Most systems have a first-level decomposition by subsystem. Subsystems are then

decomposed into their components, one of which is typically the software.

10.1.1 CONVENTIONAL WBS ISSUES

MVR CSE

Conventional work breakdown structures frequently suffer from three fundamental flaws.

1. They are prematurely structured around the product design.

2. They are prematurely decomposed, planned, and budgeted in either too much or
too little detail.

3. They are project-specific, and cross-project comparisons are usually difficult or
impossible.

Conventional work breakdown structures are prematurely structured around the product
design. Figure 10-1 shows a typical conventional WBS that has been structured primarily
around the subsystems of its product architecture, then further decomposed into the
components of each subsystem. A WBS is the architecture for the financial plan.

Conventional work breakdown structures are prematurely decomposed, planned, and
budgeted in either too little or too much detail. Large software projects tend to be over
planned and small projects tend to be under planned. The basic problem with planning too
much detail at the outset is that the detail does not evolve with the level of fidelity in the
plan.

Conventional work breakdown structures are project-specific, and cross-project comparisons
are usually difficult or impossible. With no standard WBS structure, it is extremely difficult
to compare plans, financial data, schedule data, organizational efficiencies, cost trends,
productivity trends, or quality trends across multiple projects.

MVR CSE

Figure 10-1 Conventional work breakdown structure, following the product

hierarchy

Management

System requirement and design

Subsystem 1

 Component 11

 Requirements

 Design

 Code

 Test

 Documentation

 …(similar structures for other components)
 Component 1N

 Requirements

 Design

 Code

 Test

 Documentation

 …(similar structures for other subsystems)
Subsystem M

 Component M1

 Requirements

 Design

 Code

 Test

 Documentation

 …(similar structures for other components)

 Component MN

 Requirements

 Design

 Code

 Test

 Documentation

Integration and test

 Test planning

 Test procedure preparation

 Testing

 Test reports

Other support areas

 Configuration control

 Quality assurance

 System administration

MVR CSE

10.1.2 EVOLUTIONARY WORK BREAKDOWN STRUCTURES
An evolutionary WBS should organize the planning elements around the process framework
rather than the product framework. The basic recommendation for the WBS is to organize
the hierarchy as follows:

 First-level WBS elements are the workflows (management, environment,
requirements, design, implementation, assessment, and deployment).

 Second-level elements are defined for each phase of the life cycle (inception,
elaboration, construction, and transition).

 Third-level elements are defined for the focus of activities that produce the artifacts
of each phase.

A default WBS consistent with the process framework (phases, workflows, and artifacts)
is shown in Figure 10-2. This recommended structure provides one example of how the
elements of the process framework can be integrated into a plan. It provides a
framework for estimating the costs and schedules of each element, allocating them
across a project organization, and tracking expenditures.

The structure shown is intended to be merely a starting point. It needs to be tailored to
the specifics of a project in many ways.

 Scale. Larger projects will have more levels and substructures.

 Organizational structure. Projects that include subcontractors or span multiple
organizational entities may introduce constraints that necessitate different WBS
allocations.

 Degree of custom development. Depending on the character of the project, there
can be very different emphases in the requirements, design, and implementation
workflows.

 Business context. Projects developing commercial products for delivery to a broad
customer base may require much more elaborate substructures for the deployment
element.

 Precedent experience. Very few projects start with a clean slate. Most of them are
developed as new generations of a legacy system (with a mature WBS) or in the
context of existing organizational standards (with preordained WBS expectations).

The WBS decomposes the character of the project and maps it to the life cycle, the
budget, and the personnel. Reviewing a WBS provides insight into the important
attributes, priorities, and structure of the project plan.
Another important attribute of a good WBS is that the planning fidelity inherent in each
element is commensurate with the current life-cycle phase and project state. Figure 10-3
illustrates this idea. One of the primary reasons for organizing the default WBS the way I
have is to allow for planning elements that range from planning packages (rough budgets that
are maintained as an estimate for future elaboration rather than being decomposed into
detail) through fully planned activity networks (with a well-defined budget and continuous
assessment of actual versus planned expenditures).

MVR CSE

Figure 10-2 Default work breakdown structure

A Management

 AA Inception phase management

 AAA Business case development

 AAB Elaboration phase release specifications

 AAC Elaboration phase WBS specifications

 AAD Software development plan

 AAE Inception phase project control and status assessments

 AB Elaboration phase management

 ABA Construction phase release specifications

 ABB Construction phase WBS baselining

 ABC Elaboration phase project control and status assessments

 AC Construction phase management

 ACA Deployment phase planning

 ACB Deployment phase WBS baselining

 ACC Construction phase project control and status assessments

 AD Transition phase management

 ADA Next generation planning

 ADB Transition phase project control and status assessments

B Environment

 BA Inception phase environment specification

 BB Elaboration phase environment baselining

 BBA Development environment installation and administration

 BBB Development environment integration and custom toolsmithing

 BBC SCO database formulation

 BC Construction phase environment maintenance

 BCA Development environment installation and administration

 BCB SCO database maintenance

 BD Transition phase environment maintenance

 BDA Development environment maintenance and administration

 BDB SCO database maintenance

 BDC Maintenance environment packaging and transition

C Requirements

 CA Inception phase requirements development

 CCA Vision specification

 CAB Use case modeling

 CB Elaboration phase requirements baselining

 CBA Vision baselining

 CBB Use case model baselining

MVR CSE

 CC Construction phase requirements maintenance

 CD Transition phase requirements maintenance

D Design

 DA Inception phase architecture prototyping

 DB Elaboration phase architecture baselining

 DBA Architecture design modeling

 DBB Design demonstration planning and conduct

 DBC Software architecture description

 DC Construction phase design modeling

 DCA Architecture design model maintenance

 DCB Component design modeling

 DD Transition phase design maintenance

E Implementation

 EA Inception phase component prototyping

 EB Elaboration phase component implementation

 EBA Critical component coding demonstration integration

 EC Construction phase component implementation

 ECA Initial release(s) component coding and stand-alone testing

 ECB Alpha release component coding and stand-alone testing

 ECC Beta release component coding and stand-alone testing

 ECD Component maintenance

F Assessment

 FA Inception phase assessment

 FB Elaboration phase assessment

 FBA Test modeling

 FBB Architecture test scenario implementation

 FBC Demonstration assessment and release descriptions

 FC Construction phase assessment

 FCA Initial release assessment and release description

 FCB Alpha release assessment and release description

 FCC Beta release assessment and release description

 FD Transition phase assessment

 FDA Product release assessment and release description

G Deployment

 GA Inception phase deployment planning

 GB Elaboration phase deployment planning

 GC Construction phase deployment

 GCA User manual baselining

 GD Transition phase deployment

 GDA Product transition to user

MVR CSE

Figure 10-3 Evolution of planning fidelity in the WBS over the life cycle

 Inception Elaboration

WBS Element Fidelity WBS Element Fidelity

Management High Management High

Environment Moderate Environment High

Requirement High Requirement High

Design Moderate Design High

Implementation Low Implementation Moderate

Assessment Low Assessment Moderate

Deployment Low Deployment Low

WBS Element Fidelity WBS Element Fidelity

Management High Management High

Environment High Environment High

Requirements Low Requirements Low

Design Low Design Moderate

Implementation Moderate Implementation High

Assessment High Assessment High
Deployment High Deployment Moderate

 Transition Construction

10.2 PLANNING GUIDELINES
Software projects span a broad range of application domains. It is valuable but risky to make

specific planning recommendations independent of project context. Project-independent

planning advice is also risky. There is the risk that the guidelines may pe adopted blindly

without being adapted to specific project circumstances. Two simple planning guidelines

should be considered when a project plan is being initiated or assessed. The first guideline,

detailed in Table 10-1, prescribes a default allocation of costs among the first-level WBS

elements. The second guideline, detailed in Table 10-2, prescribes the allocation of effort and

schedule across the lifecycle phases.

MVR CSE

10-1 Web budgeting defaults

First Level WBS Element Default Budget

Management 10%

Environment 10%

Requirement 10%

Design 15%

Implementation 25%

Assessment 25%

Deployment 5%

Total 100%

Table 10-2 Default distributions of effort and schedule by phase

Domain Inception Elaboration Construction Transition

Effort 5% 20% 65% 10%

Schedule 10% 30% 50% 10%

10.3 THE COST AND SCHEDULE ESTIMATING PROCESS

Project plans need to be derived from two perspectives. The first is a forward-looking, top-
down approach. It starts with an understanding of the general requirements and constraints,
derives a macro-level budget and schedule, then decomposes these elements into lower level
budgets and intermediate milestones. From this perspective, the following planning sequence
would occur:

1. The software project manager (and others) develops a characterization of the overall
size, process, environment, people, and quality required for the project.

2. A macro-level estimate of the total effort and schedule is developed using a
software cost estimation model.

3. The software project manager partitions the estimate for the effort into a top-level
WBS using guidelines such as those in Table 10-1.

4. At this point, subproject managers are given the responsibility for decomposing
each of the WBS elements into lower levels using their top-level allocation, staffing
profile, and major milestone dates as constraints.

The second perspective is a backward-looking, bottom-up approach. We start with the end in
mind, analyze the micro-level budgets and schedules, then sum all these elements into the
higher level budgets and intermediate milestones. This approach tends to define and
populate the WBS from the lowest levels upward. From this perspective, the following
planning sequence would occur:

1. The lowest level WBS elements are elaborated into detailed tasks

2. Estimates are combined and integrated into higher level budgets and milestones.

3. Comparisons are made with the top-down budgets and schedule milestones.

Milestone scheduling or budget allocation through top-down estimating tends to exaggerate
the project management biases and usually results in an overly optimistic plan. Bottom-up

MVR CSE

estimates usually exaggerate the performer biases and result in an overly pessimistic plan.
These two planning approaches should be used together, in balance, throughout the life

cycle of the project. During the engineering stage, the top-down perspective will dominate
because there is usually not enough depth of understanding nor stability in the detailed task
sequences to perform credible bottom-up planning. During the production stage, there should
be enough precedent experience and planning fidelity that the bottom-up planning
perspective will dominate. Top-down approach should be well tuned to the project-specific
parameters, so it should be used more as a global assessment technique. Figure 10-4
illustrates this life-cycle planning balance.

Figure 10-4 Planning balance throughout the life cycle

Bottom up task level planning based on

metrics from previous iterations

Top down project level planning based on

microanalysis from previous projects

Engineering Stage Production Stage

Inception Elaboration Construction Transition
 Feasibility iteration Architecture iteration Usable iteration Product

 Releases

Engineering stage planning

emphasis

Production stage planning

emphasis

Macro level task estimation for

production stage artifacts

Micro level task estimation for

production stage artifacts

Micro level task estimation for

engineering artifacts

Macro level task estimation for

maintenance of engineering artifacts

Stakeholder concurrence Stakeholder concurrence

Coarse grained variance analysis of

actual vs planned expenditures

Fine grained variance analysis of actual

vs planned expenditures

Tuning the top down project

independent planning guidelines into

project specific planning guidelines

WBS definition and elaboration

 10.4 THE ITERATION PLANNING PROCESS
Planning is concerned with defining the actual sequence of intermediate results. An
evolutionary build plan is important because there are always adjustments in build content
and schedule as early conjecture evolves into well-understood project circumstances.
Iteration is used to mean a complete synchronization across the project, with a well-

MVR CSE

orchestrated global assessment of the entire project baseline.
 Inception iterations. The early prototyping activities integrate the foundation

components of a candidate architecture and provide an executable framework for
elaborating the critical use cases of the system. This framework includes existing
components, commercial components, and custom prototypes sufficient to
demonstrate a candidate architecture and sufficient requirements understanding to
establish a credible business case, vision, and software development plan.

 Elaboration iterations. These iterations result in architecture, including a complete
framework and infrastructure for execution. Upon completion of the architecture
iteration, a few critical use cases should be demonstrable: (1) initializing the architecture,
(2) injecting a scenario to drive the worst-case data processing flow through the system
(for example, the peak transaction throughput or peak load scenario), and (3) injecting a
scenario to drive the worst-case control flow through the system (for example,
orchestrating the fault-tolerance use cases).

 Construction iterations. Most projects require at least two major construction iterations:
an alpha release and a beta release.

 Transition iterations. Most projects use a single iteration to transition a beta release into
the final product.

The general guideline is that most projects will use between four and nine iterations. The
typical project would have the following six-iteration profile:

 One iteration in inception: an architecture prototype

 Two iterations in elaboration: architecture prototype and architecture baseline

 Two iterations in construction: alpha and beta releases

 One iteration in transition: product release

 A very large or unprecedented project with many stakeholders may require additional

inception iteration and two additional iterations in construction, for a total of nine iterations.

10.5 PRAGMATIC PLANNING
Even though good planning is more dynamic in an iterative process, doing it accurately is far

easier. While executing iteration N of any phase, the software project manager must be

monitoring and controlling against a plan that was initiated in iteration N - 1 and must be

planning iteration N + 1. The art of good project· management is to make trade-offs in the

current iteration plan and the next iteration plan based on objective results in the current

iteration and previous iterations. Aside from bad architectures and misunderstood

requirements, inadequate planning (and subsequent bad management) is one of the most

common reasons for project failures. Conversely, the success of every successful project can

be attributed in part to good planning.
A project's plan is a definition of how the project requirements will be transformed into' a
product within the business constraints. It must be realistic, it must be current, it must be a
team product, it must be understood by the stakeholders, and it must be used. Plans are not
just for managers. The more open and visible the planning process and results, the more
ownership there is among the team members who need to execute it. Bad, closely held plans
cause attrition. Good, open plans can shape cultures and encourage teamwork.

Unit – Important Questions

1. Define Model-Based software architecture?

2. Explain various process workflows?

3. Define typical sequence of life cycle checkpoints?

MVR CSE

4. Explain general status of plans, requirements and product across the major milestones.

 5. Explain conventional and Evolutionary work break down structures?

 6. Explain briefly planning balance throughout the life cycle?

MVR CSE

