

(Autonomous)

(Approved by AICTE | NAAC Accreditation with 'A' Grade | Accredited by NBA (CIV, CSE, ECE & EEE) | Affiliated to JNTUA) Nandikotkur Road, Venkayapalli (V), Kurnool - 518452, Andhra Pradesh

Department of Computer Science Engineering

Course Outcomes-R18

COURSE	OBJECT ORIENTED PROGRAMMING USING JAVA
NAME	
COURSE	After successful completion of the course, the student will be able to
OUTCOMES	
1	Analyze the necessity for Object Oriented Programming paradigm over structured programming and become familiar with the fundamental concepts in OOP like encapsulation, Inheritance and Polymorphism.
2	Demonstrate an ability to design and develop java programs, analyze, and interpret objectoriented data and report results
3	Demonstrate an ability to design an object oriented system, swing components and multithreaded processes as per needs and specifications
4	Demonstrate an ability to visualize and work on laboratory and multidisciplinary tasks likeconsole and windows applications both for standalone and Applets programs
5	Demonstrate skills to use latest object oriented programming language and software toanalyze OOP problems.
6	Develop confidence for self education and ability for life-long learning needed foradvanced java technologies.

COURSE NAME	DATABASE MANAGEMENT SYSTEMS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Understand the basic concepts of database, data models and to apply the same to get the solution for database related problems using Entity Relationship model.
2	Understand the relational database and be able to write relational algebra and calculus expressions. Ability to design database by applying appropriate normalization techniques.
3	Apply optimized SQL queries to solve real time problems.
4	Create data elements and index structures.
5	Analyze the system failures and concurrency control.
6	Apply the concepts for the latest technologies and techniques

COURSE NAME	DISCRETE MATHEMATICS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Understand definitions and proofs using basic discrete mathematics.
2	Create and interpret statements presented in Boolean logic.
3	Create short proofs using direct proof, indirect proof, proof by contradiction, and case analysis

(Autonomous)

4	Demonstrate a working knowledge of set notation and elementary set theory, recognize the connection between set operations and logic, prove elementary results involving sets
5	Apply the different properties of injections, surjection, bisections, compositions, and inverse functions.
6	Solve the mathematical problems that involve computing permutations and combinations of a set, fundamental enumeration principles and graph theory

COURSE NAME	Digital logic and Computer Organization
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Understand the fundamental concepts of digital circuits.
2	Apply the knowledge of digital circuits concepts to minimize a digital circuit for the given parameters using mapping techniques.
3	Construct and analyze various combinational circuits used in digital systems such as adders, subtractors, code-convertors, decoders, encoders, and multiplexers
4	Construct and analyze various sequential circuits used in digital systems such as flipflops, registers and counters.
5	Understand the basic concepts of computer and computer arithmetic
6	Analyze the basic processing unit and pipelining .

COURSE NAME	MANAGERIAL ECONOMICS & FINANCIAL ANALYSIS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Understand, Concepts of economics, managerial economics, scope, nature and importance of managerial economics, demand determinants, law of demand and its exceptions.
2	Understand elasticity of demand, types and measurement of elasticity of demand, demand forecasting, methods of demand forecasting.
3	Understand production function, isoquants and isocosts, MRTS, least cost combination of inputs, Cobb-Douglas production function and law of return to scale. Types of cost, BEA, BEP.
4	Understand market structure, types of markets, price-output determination under perfect competition, monopoly, monopolistic competition and pricing methods.
5	Understand types of business organizations and LPG.
6	Understand capital, types, sources, estimation of capital requirements, capital budgeting and techniques of capital budgeting.

COURSE NAME	DATABASE MANAGEMENT SYSTEMS LABORATORY
COURSE OUTCOMES	After successful completion of the course, the student will be able to

(Autonomous)

1	Gain knowledge and understand the data models used for structuring data in database systems
2	Understand the general principles of Retrieving information from databases
3	Analyze the best possible ways of solving a given query.
4	Evaluate the complex nested queries on multiple relations.
5	Implement various integrity constraints, triggers and views in database design
6	Analyze the latest technologies and techniques

COURSE NAME	JAVA PROGRAMMING LABORATORY
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply of data types , variables and control structures to solve problems
2	Apply object-oriented concepts to solve problems including generating series primes, searching a pattern in a file
3	Design, write, debug and execute applet programs using Integrated Development Environment
4	Develop programs using threads and swing concepts
5	Apply I/O stream and networking classes to develop client and server interaction
6	Apply the concepts and create solution effectively as a member or leader in a team during the development of a software project.

COURSE NAME	PROBABILITY AND STATISTICS
COURSE OUT	After successful completion of the course, the student will be able to
С	
OMES	
1	Understand basic concepts of probability and statistics and apply them in solving practical engineering problems
2	Apply discrete and continuous probability distributions to evaluate the probability of real world problems
3	Conduct hypotheses tests concerning population parameters for single and multiple populations based on sample data.
4	Understand concepts of t-test f-test and chi-square test for small samples
5	Demonstrate the ability to design, use, and interpret control charts for variables
6	Demonstrate the knowledge and understand various queuing models

(Autonomous)

COURSE	SOFTWARE ENGINEERING
INAIVIE	
COURSE	After successful completion of the course, the student will be able to
OUTCOMES	
1	Possess knowledge on evolving role of software, process and maturity models
2	Understand the various phases of software development life cycles and software requirements
3	Possess necessary skills to elicit the requirements of a software system and to create well written software documentation involving appropriate system models.
4	Design, implement and evaluate a computer based system, process, component or program to meet desired needs within realistic constraints specific to the field
5	Construct software projects by integrating components with appropriate user interface
6	Apply various testing strategies to verify, validate and to release error free software

COURSE NAME	OPERATING SYSTEMS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Identify and understand the history of operating systems, functions, structures and design issues associated with operating systems.
2	Understand the process management concepts including scheduling-criteria, algorithms, their evaluation and Thread scheduling.
3	Apply the solutions to process synchronization problems and implementation methods.
4	Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms
5	Understand the principles of dead lock
6	Understand the issues related to file system interface and implementation

COURSE NAME	DESIGN & ANALYSIS OF ALGORITHMS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Analyze the efficiency of algorithm
2	Understand the running time and space complexity of algorithms by using the concepts of big Oh, Omega and Theta notations
3	Formulate the time order analysis for an algorithm.
4	Use the mathematical techniques required to prove the time complexity of a program/algorithm

(Autonomous)

5	Apply algorithmic methods (such as divide and conquer, greedy method, dynamic programming, local search, branch & bound, and randomized algorithms) to the realworld problems to design an algorithm
6	Analyze the latest technologies and techniques.

COURSE NAME	FORMAL LANGUAGES AND AUTOMATA THEORY
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Design an Automata to accept strings from various simple languages
2	Understand the functioning of Finite-State Machines, Deterministic Finite-State Automata, Nondeterministic Finite-State Automata and Pushdown Automata
3	Design grammars and recognizers for different formal languages
4	Design automata, regular expressions and context-free grammars accepting or generating a certain language
5	Understand the relation between types of languages and types of finite automata
6	Describe the language accepted by an automata or generated by a regular expression or a context-free grammar

COURSE NAME	R PROGRAMMING LABORATORY
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Implement R Analytics to create Business Insights
2	Analyze the data and results using R.
3	Apply analytical methods and produce presentation quality graphics.
4	Explore data-sets to create testable hypotheses
5	Perform appropriate statistical tests using R.
6	Create and edit visualizations with R.

COURSE NAME	DESIGN AND ANALYSIS OF ALGORITHMS LABORATORY
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Demonstrate the complexity of the algorithms
2	Analyze various algorithms and design techniques
3	Demonstrate the techniques of divide and conquer, greedy, dynamic programming, backtracking, branch and bound to solve the problems.
4	Identify and analyze criteria and specifications appropriate to new problems
5	Understand the appropriate algorithmic design technique for the solution.

(Autonomous)

6	[Demonstrate with proof that a certain problem is NP-Complete	
	RSE 1E	WEB PROGRAMMING LABORATORY	
COUR OUTCO	RSE MES	After successful completion of the course, the student will be able to	
1		Apply the design principles of HTML and Java Script for creating static and dynamic we pages	b
2		Analyze the differences between various scripting languages	
3		Demonstrate a structural framework for dynamic web apps using AngularJS	
4		Analyze the client side validation procedure in web applications.	
5		Design solutions using web servers and database servers	
6		Identify the user requirements and design appropriate business solutions	

COURSE NAME	COMPUTER NETWORKS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply the networking concepts in configuring the systems.
2	Illustrates error handling mechanism in data link layer
3	Analyze the routing algorithms in finding the shortest path.
4	Apply transport protocols in network communications
5	Implements domain name service and network security in the communication segment.

COURSE NAME	DATA MINING
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply the principles of business intelligence in the commercial segment
2	Make use of pre-processing techniques for data organization
3	Implement association, clustering and rule based mining for Market based analysis
4	Analyze the data mining classification technique for data differentiation
5	Design the unsupervised clustering algorithms for data analysis

(Autonomous)

COURSE NAME	COMPILER DESIGN
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Identify tokens in the source program using lexical analyzer technique
2	Develop top-down and bottom-up parsers for the given grammar
3	Construct type checking semantic rules using synthesized and inherited attributes
4	Develop optimized intermediate code using code optimization techniques
5	Generate target code using flow graph and DAG
COURSE NAME	DISTRIBUTED DATABASES
COURSE	After successful completion of the course, the student will be able to
OUTCOMES	
	Analyze distributed database design to address architectural issues
1 2	Analyze distributed database design to address architectural issues Apply partitioning techniques to enhance data storage and security
OUTCOMES 1 2 3	Analyze distributed database design to address architectural issues Apply partitioning techniques to enhance data storage and security Design various query processing strategies for query optimization
OUTCOMES 1 2 3 4	Analyze distributed database design to address architectural issues Apply partitioning techniques to enhance data storage and security Design various query processing strategies for query optimization Develop a concurrent system for transaction management

COURSE NAME	ENTERPRISE STORAGE SYSTEM
COURSE	After successful completion of the course, the student will be able to
OUTCOMES	
CO1	Analyze the architecture of an intelligent storage system for rapid data accessing
CO2	Justify the implementation of storage solutions to enable business continuity
CO3	Apply Storage Area Network for virtualization
CO4	Design a storage solution based on organizations requirements
CO5	Provide Storage Infrastructure Virtualization for better storage management

COURSE NAME	TCP/IP Protocol
COURSE OUTCOMES	After successful completion of the course, the student will be able to

(Autonomous)

5	Apply flow, error and congestion control mechanisms for efficient data transmission
4	Apply buffer management techniques to enhance performance
3	Design routing mechanisms for congestion avoidance
2	Distinguish between reliable and unreliable protocols for interconnections in application level and network level
1	Analyze the layers of the OSI and TCP/IP for efficient data transmission.

COURSE NAME	ANGULAR JS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply single-page application designs in developing web applications
2	Implement the type scripts layers for web applications
3	Build Angular forms for client interaction
4	Implement efficient Angular routings to protect components from unauthorized access
5	Design view components for chatting applications

COURSE NAME	COMPUTER NETWORKS LABORATORY
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply the network principles in establishing network communications
2	Make use of layered network architecture functionalities in connecting systems
3	Apply mathematical concepts in solving the computational problems
4	Analyze performance of protocols in information exchange
5	Compare routing algorithms for dynamic routing

COURSE	DATA MINING LABORATORY
NAME	
COURSE	After successful completion of the course, the student will be able to
OUTCOMES	
1	Execute data mining algorithms for extraction of appropriate datasets
2	Apply data preprocessing techniques on raw input data for data cleansing

(Autonomous)

3	Appraise the classification techniques on large datasets fordifferentiation
4	Apply the data mining algorithms to perform association rule mining and clustering tasks
5	Differentiate the outlier data from cluster data for statistical analysis
COURSE NAME	PYTHON PROGRAMMING LABORATORY
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply fundamental programming concepts of python for solving general purpose problems
2	Implement sequences to solve complex problems
3	Build functions to increase code reusability
4	Design web applications using Django framework

COURSE NAME	HUMAN VALUES & PROFESSIONAL ETHICS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply human values and ethics in professional life
2	Develop the moral ideals to maintain good relationships with people
3	olve environmental related problems by keeping health of human being into consideration
4	Make use of the fundamental rights and human rights in life for individual dignity
5	Build the sound health system both physically and mentally by practicing yoga, karate, sports etc

COURSE NAME	CLOUD COMPUTING
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Analyze cloud delivery models for better architecture.
2	Implement infrastructure as a service model for industrial applications.
3	Organize the cloud platform model for optimization services.
4	Develop various application software with software as service.
5	Design cloud computing reference architecture for deliverymodels

(Autonomous)

COURSE NAME	SOFTWARE TESTING TECHNIQUES
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Derive test cases for any given problem
2	Compare the different testing techniques to produce quality software
3	Identify the problem to its suitable testing model for errordetection
4	Apply the appropriate technique for the design of data flow and integration of software
5	Create appropriate document for the software artifact

COURSE NAME	ARTIFICIAL INTELLIGENCE
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply suitable search strategies in finding better solutions for a given problem
2	Analyze performance of an algorithm as per given parameters
3	Analyze the efficient problem state space search for a problem
4	Implement the appropriate AI techniques to solve uncertainty problems
5	Apply AI techniques to solve real time problems
COURSE NAME	BIG DATA
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Analyze distributed programs for formation of large scale clusters
2	Apply enabling techniques of Hadoop and Map Reduce for distributed processing
3	Assemble the components of Hadoop and its Eco-System for efficient data storage and processing
4	Develop Map-Reduce programs in Java for performing large scale data analysis
5	Apply K-means clustering and Mahout Techniques for efficient data analysis

(Autonomous)

COURSE NAME	PARALLEL ALGORITHMS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Design parallel random access machines algorithms for standard problems and applications
2	Analyze efficiency of different parallel algorithms
3	Choose the mapping on multi computers for efficient data processing. (Assess multiprocessors and multi computers for efficient data processing).
4	Design the matrix algorithms to reduce complexity.
5	Apply the graph algorithms to solve complex numeric problems

COURSE NAME	NETWORKING ARCHITECTURE AND DESIGN
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply computer design and instruction set principles as per system requirements
2	Analyze system requirements to remove redundancy
3	Propose sub-netting and routing strategies in addressing architectural issues
4	Apply network management mechanisms for data security and privacy
5	Develop hybrid mechanisms for effective interconnection
COURSE NAME	DESIGN PATTERNS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply the model-view-controller architecture for a given application
2	Propose the most suitable design pattern to solve a design problem
3	Inspect existing code to perform software refactoring

(Autonomous)

COURSE NAME	DATA ANALYTICS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Analyze different datasets, file types for effective data visualization
2	Apply central limit theorem for summarizing data
3	create connection between R and NoSQL Database for processing multidimensional data
4	Implement correlation and regression models for better analysis
5	Analyze various business problems for effective decision making

COURSE NAME	CLOUD CRYPTOGRAPHY
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Apply various security mechanisms for the data stored in a cloud
2	Inspect various classical encryption techniques and block cipher structure for data transmission
3	nalyze advanced encryption standard, cryptographic hash functions and digital signatures for non-repudiation
4	Identify various attacks on virtualization systems
5	Adapt modern security standards to achieve greater security

(Autonomous)

COURSE NAME	ETHICAL HACKING
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Analyze threats and attacks by cryptographic algorithms for robust applications
2	Perform security auditing and testing to achieve full proof security system
3	Identify issues related to ethical hacking to prevent system attacks
4	Apply network defence measures to prevent hacking
5	Implement penetration and security testing to overcome malware attacks

COURSE NAME	DevOps
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Analyze DevOps methodologies in collaboration with the Development and Operations team
2	Apply configuration management strategies for better integrations and deployment
3	Make use of various DevOps tools to ease of collaboration and development
4	Determine the speed of productivity for in-time delivery
5	Implement application deployment and configuration for uninterrupted usage

COURSE NAME	ARTIFICIAL INTELLIGENCELABORATORY
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Execute statistical problems to produce appropriate solutions
2	Categorize the problem for selection of an appropriate algorithm
3	Compare computational complexity of AI problems for better efficiency
4	Demonstrate various AI algorithms based on empirical and theoretical proofs for performance statist

(Autonomous)

COURSE NAME	CLOUD COMPUTING LABORATORY
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Develop and deploy applications for better cloud utility
2	Design web services for modern commercialapplications
3	Analyze the performance, scalability, and availability of the underlying cloud technologies for business requirements
4	Implement software installation for utility of its applications
5	Compare various cloud computing platforms for better cloud services

COURSE NAME	ADVANCED ENGLISH LANGUAGE COMMUNICATION SKILLS
COURSE OUTCOMES	After successful completion of the course, the student will be able to
1	Recall vocabulary and enhance accuracy in grammar
2	Understand and communicate effectively in speaking and in writing
3	Apply language structures to construct good relations.
4	Identify and develop effective technical writing skills
5	Determine and develop personal presentation techniques.
6	Design necessary skills to deliver presentation confidently for improving in respective domains

(Autonomous)

COURSE NAME	CRYPTOGRAPHY AND NETWORK SECURITY
COURSE OUTCOMES	After completion of the course, the learner will be able to:
1	Understand cryptography and network security concepts and application
2	Apply security principles to system design
3	Identify and investigate network security threat
4	Analyze and design network security protocols
5	Conduct research in network security

COURSE	MOBILE APPLICATION DEVELOPMENT
NAME	
COURSE	After completion of the course, the learner will be able to:
OUTCOMES	
1	Able to recognize the importance of knowledge on Android programming basics
2	Able to construct the various aspects of user interfaces.
3	Able to apply knowledge on displaying pictures, menus and data services.
4	Able to develop application on content provider and messaging services
5	Able to substitute on the fundamentals of location based services, and creating your own services.
COURSE NAME	MACHINE LEARNING
COURSE OUTCOMES	After completion of the course, the learner will be able to:
1	Distinguish between, supervised, unsupervised and semi-supervised learning
2	Apply the opt machine learning strategy for any given problem
3	Suggest supervised, unsupervised or semi-supervised learning algorithms for any given problem
4	Design a system that uses the appropriate graph models of machine learning
5	Modify existing machine learning algorithms to improve classification efficiency

(Autonomous)

COURSE NAME	DATA VISUALIZATION TECHNIQUES
COURSE OUTCOMES	After completion of the course, the learner will be able to:
1	Make use of Tableau for effective communication of data.
2	Create advanced visualizations, formatting and calculations using Tableau
3	Analyze changes in data visualization over time
4	Create different types of dash boards
5	Analyze and recommend effective business decisions/solutions using a systematic, evaluative, and information-based approach.

COURSE NAME	SOFTWARE DEFINED NETWORKS
COURSE OUTCOMES	After completion of the course, the learner will be able to:
1	Explain the key benefits of SDN by the separation of data and control planes.
2	Interpret the SDN data plane devices and Openflow Protocols
3	Implement the operation of SDN control plane with different controllers.
4	Apply techniques that enable applications to control the underlying network using SDN.
5	Describe Network Functions Virtualization components and their roles in SDN

(Autonomous)

COURSE	NATURAL LANGUAGE PROCESSING
NAME	
COURSE	After completion of the course, the learner will be able to:
OUTCOMES	
1	Understand various phases in natural language processing
2	Understand different linguistic resources software tools
3	Understand parts of speech tagging with HMM, TBL.
4	Illustrate natural language grammar and context free grammar.
5	Understand applications of NLP and machine translation.

COURSE	SOLUTION STACK
NAME	
COURSE OUTCOMES	After completion of the course, the learner will be able to:
1	Develop front end of an application using HTML, CSS and JavaScript along with ReactJs
2	Develop back end of an application using NodeJs
3	Implement MVC and responsive design to scale well across PC, tablet and Mobile Phone
4	Develop a website and deploy on a web server
5	Authenticate, store, and structure user data.

COURSE NAME	MOBILE APPLICATION DEVELOPMENT LAB
COURSE OUTCOMES	After completion of the course, the learner will be able to:
1	Able to acquire practical knowledge on Android programming.
2	Able to understand the implementation aspects of user interfaces.
3	Able to understand the implementation of image view and persistent data services.
4	Able to acquire practical knowledge on messaging services.
5	Able to understand the practical exposure on implementation of location based services.

(Autonomous)

COURSE NAME	MACHINE LEARNING LAB
COURSE OUTCOMES	After completion of the course, the learner will be able to:
1	Distinguish between, supervised, unsupervised and semi-supervised learning
2	Apply the opt machine learning strategy for any given problem
3	Suggest supervised, unsupervised or semi-supervised learning algorithms for any given problem
4	Design a system that uses the appropriate graph models of machine learning
5	Modify existing machine learning algorithms to improve classification efficiency

COURSE NAME	DEEP LEARNING
COURSE OUTCOMES	After completion of the course, the learner will be able to:
1	Understand the historical trends in deep learning and use Tensor flow for performing Linear Regression, Gradient Descent, optimizers, graph visualization
2	Summarize the fundamentals of Artificial Neural Networks.
3	Understand the training of Deep Neural Nets.
4	Understand the Convolutional Neural Networks Architecture
5	Understand the Recurrent Neural Networks and deep RNN training.

(Autonomous)

COURSE	BLOCK CHAIN TECHNOLOGY
NAME	
COURSE	After completion of the course, the learner will be able to:
OUTCOMES	
1	Understand and explore the process of Block chain technology in payment and funding processing.
2	Analyze the working of Smart Contracts
3	Perform basic operations in hyper ledges and block chain networks.
4	Apply Ethereum and its Smart Contracts in application development
5	Describe and deploy the smart contracts.
6	Identify the risks involved in building Block chain applications.

COURSE NAME	CYBER SECURITY
COURSE OUTCOMES	After completion of the course, the learner will be able to:
1	Analyze cyber-attack on different online web applications.
2	Apply different techniques to classify different types of cybercrimes
3	Get an understanding over different government cyber laws and cyber forensics techniques.
4	Understand how to protect them self and ultimately society from cyber-attacks.
5	Understanding cybercrime investigating methods using previous case studies.

COURSE NAME	USER INTERFACE DESIGN
COURSE OUTCOMES	After completion of the course, the learner will be able to:
1	Understand the concepts and principles of graphical user interface and its design process
2	Select appropriate tool for user interface design
3	Identify appropriate user devices for better user interaction.
4	Create effective screen design using screen elements, windows and components.