G. PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY: KURNOOL

DEPARTMENT OF MECHANICAL ENGINEERING

The following are the Course Outcomes of all the courses for the Academic Year 2018-2019 from I-B.Tech to IV B.Tech

R18 REGULATION

I B.TECH I SEM

Course Name: FUNCTIONAL ENGLISH

#	COURSE OUTCOMES
CO1	Understand and remember various aspects of English.
CO2	Analyze the different situations of speaking and writing skills.
CO3	Apply the LSRW skills to the societal Communication.
CO4	Analyze the importance of English in Science and Technological Context.
CO5	Able to demonstrate the acquired knowledge in executing the technical writing.

Course Name: MATHEMATICS-I

#	COURSE OUTCOMES
CO1	Applymechanics for solving engineering problems
CO2	Apply the principles of acoustics for noise cancellation and in designing buildings
CO3	Analyze the applications of ultrasonics in various engineering fields
CO4	Explainthe relationship between elastic constants
CO5	Interpret the concepts of lasers and optical fibers in various applications

Course Name: COMPUTER PROGRAMMING

#	COURSE OUTCOMES
CO1	Comprehend the fundamental concepts of computer hardware and problem solving Abilities
CO2	Knowledge on the basic concepts of algorithms, flow charts and python programming
CO3	Ability to analyze the procedure for providing input and acquire output from the program along with implementation of control statements
CO4	Interpret the importance of functions in programming
CO5	Analyze 3- dimensional coordinate systems and utilization of special functions.

Course Name: ENGINEERING CHEMISTRY

#	COURSE OUTCOMES
CO1	Compare the quality of drinking water with BIS and WHO standards. Illustrate problems associated with hard water and demonstrate industrial water treatment process.
CO2	Demonstrate the corrosion prevention method and apply Nernst equation for calculating electrode and cell potentials.
CO3	Analyze the classification of fuels along with their characteristics and calorific value involving solid fuels, liquid and gaseous fuels.
CO4	Explain different types of polymers and their applications, demonstrate the mechanism of conduction and conducting polymers.
CO5	Summarize the underlying chemistry of engineering materials involving Cement, lubricants.

Course Name: ENVIRONMENTAL STUDIES

#	COURSE OUTCOMES
CO1	Solve environmental problems through higher level of personal involvement and interest.
CO2	Apply ecological morals to keep up amicable connection among nature and human beings.
CO3	Recognize the interconnectedness of human dependence on the earth's ecosystems.
CO4	Apply environmental laws for the protection of environment and wildlife.
CO5	Influence society in proper utilization of goods and services

Course Name: ENGLISH LANGUAGE COMMUNICATION SKILLS (ELCS) LAB

#	COURSE OUTCOMES
CO1	Become active participants in the learning process and acquire proficiency in spoken English.
CO2	Speak with clarity and confidence thereby enhance employability skills.
CO3	Analyze the English speech sounds, stress, rhythm, intonation and syllable Division for better listening and speaking comprehension.
CO4	Evaluate and exhibit acceptable etiquette essential in social and professional settings
CO5	Create awareness on mother tongue influence and neutralize it in order to improve fluency in spoken English.

Course Name: ENGINEERING CHEMISTRY LAB

#	COURSE OUTCOMES
CO1	Determine the cell constant and conductance of solutions
CO2	Prepare advanced polymer materials
CO3	Determine the physical properties like surface tension, adsorption and viscosity
CO4	Estimate the Iron and Calcium in cement
CO5	Calculate the hardness of water and calculation of dissolved oxygen percentages

Course Name: COMPUTER PROGRAMMING LAB

#	COURSE OUTCOMES
CO1	Design solutions to mathematical problems & Organize the data for solving the
	problem
CO2	Understand and implement modular approach using python
CO3	Learn and implement various data structures provided by python library including
	string, list, dictionary and its operations etc
CO4	Understands about files and its applications.
CO5	Develop real-world applications, files and exception handling provided by python

I B.TECH II SEM

Course Name: ENGLISH FOR PROFESSIONAL COMMUNICATION

#	COURSE OUTCOMES
CO1	Understand the context, topic, and pieces of specific information from social or
	transactional dialogues spoken by native speakers of English
CO2	Apply grammatical structures to formulate sentences and correct word forms
CO3	Analyze discourse markers to speak clearly on a specific topic in informal discussions
CO4	Evaluate reading/listening texts and to write summaries based on global comprehension
	of these texts.
CO5	Create a coherent paragraph interpreting a figure/graph/chart/table

Course Name: MATHEMATICS-II

#	COURSE OUTCOMES
CO1	Apply the mathematical principles to solve second and higher order differential equations
CO2	Analyze the non- homogeneous linear differential equations along with method of variation of parameters
CO3	Apply the concept of higher order differential equations to the various streams like Mass spring system and L-C-R Circuit problems

CO4	Apply a range of techniques to find solutions of standard PDEs and basic properties of standard PDEs
CO5	Analyze the vector calculus involving divergence, curl and their properties along with vector identities

Course Name: MATERIAL SCIENCE AND ENGINEERING

#	COURSE OUTCOMES
CO1	Identify the properties of the crystallization of ferrous and nonferrous materials.
CO2	Construct the equilibrium diagrams by experimental methods.
CO3	Make use of advanced composite materials in manufacturing of components and sophisticated machine.
CO4	Improve the properties of ferrous and nonferrous materials using different heattreatment processes.
CO5	Select the suitable materials for various engineering applications.

Course Name: **ENGINEERING PHYSICS**

#	COURSE OUTCOMES
CO1	applymechanics for solving engineering problems
CO2	apply the principles of acoustics for noise cancellation and in designing buildings
CO3	analyze the applications of ultrasonics in various engineering fields
CO4	explainthe relationship between elastic constants
CO5	interpret the concepts of lasers and optical fibers in various applications

Course Name: ENGINEERING DRAWING

#	COURSE OUTCOMES
CO1	Learning conventions of Drawing, which is an Universal Language Of Engineers. Also
	Interpret and Sketch the various curves which Including ellipse, parabola, hyperbola
CO2	Analyze and draft the orthographic projections of points and lines
CO3	Analyze and sketch the orthographic projections of planes and solids
CO4	Revise and Improve their visualization skills in the development of new products
CO5	Construct the isometric projection of an object employing orthographic projections

Course Name: MATERIAL SCIENCE AND ENGINEERING LABORATORY

#	COURSE OUTCOMES
CO1	Make use of different material samples for investigating micro structures.

CO2	Interpret the microstructures of materials usingmetallurgical microscope
CO3	Measure the hardenability of mild steel samples.
CO4	Improve the properties of materials using various heat treatment processes.
CO5	Compare the properties of different materials with temperature variation.

Course Name: ENGINEERING PHYSICS LAB

#	COURSE OUTCOMES
CO1	estimate the mechanical properties of materials
CO2	determine moment of inertia of a flywheel
CO3	measure the velocity of ultrasonics in liquid by applying the basic concepts of ultrasonics
CO4	determinethe wavelength of laser, particle size, numerical aperture and acceptance angle by applying the principles of lasers and optical fibres
CO5	Measure the elastic constants, Poisson's ratio of the material and verifiesHooke'slaw

Course Name: ENGG AND IT WORKSHOP LAB

#	COURSE OUTCOMES
CO1	Develop skill in S/W and H/W trouble shooting, and salve the problems of
CO1	Develop skill in S/W and H/W trouble shooting, and solve the problems of
	assembling and OS installation
CO2	prepare slide presentations using the presentation tool
CO3	access the internet and browse it to obtain the required information
CO4	Study the concepts related to fitting and
	able to identify the various tools of fitting and Foundry
CO5	Identify the various tools and their use in different sections oftin smithy and Welding

II B. TECH I SEM

Course Name: MATHEMATICS-III

#	COURSE OUTCOMES
CO1	Interpret the Eigen values and Eigen vectors of matrix in terms of the transformation it represents in to a matrix Eigen value problem. Define a quadratic form and
	determine its nature using Eigen values
CO2	Analyze the non- homogeneous linear differential equations along with method of variation of
	parameters.
CO3	Understand the technique of interpolation along with Lagrange's formula and
	Newton's interpolation formulae.

CO4	Understand and apply the concepts of curve fitting, numerical Differentiation and integration.
CO5	Interpret the numerical solutions of ordinary differential equations
	employing Taylor series, Euler's, Picard's and Runga-kutta methods

Course Name: MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

#	COURSE OUTCOMES
CO1	Understand, concepts of economics, managerial economics, scope, nature and Importance of managerial economics, demand determinants, law of demand and itsexceptions.
CO2	Understand elasticity of demand, types and measurement of elasticity of demand, demand forecasting, methods of demand forecasting
CO3	Understand production function, isoquants and isocosts, MRTS, least cost combination of inputs, cobb-Douglas production function and law of return to scale. Types of cost,BEA, BEP.
CO4	Understand market structure, types of markets, price-output determination under Perfect competition, monopoly, monopolistic competition and pricing methods.
CO5	Understand capital, types, sources, estimation of capital requirements, capital Budgeting and techniques of capital budgeting.

Course Name: THERMODYNAMICS

#	COURSE OUTCOMES
CO1	Understand the concepts on thermodynamic property, cycle, constraints of equilibrium, reversibility
	and energy transfer in the form of Work and Heat with various applications
CO2	Understand the how energy transformation occurs from one form into another form in
	open and closed systems and applying steady flow energy equation and mass balance equation
	to various applications
CO3	Understand the Nozzle, Diffuser, Throttling device, Turbine and c o mpressor in
	laboratories or local industries and understand their working principles practically
CO4	Understand the major difference in working of a heat engine, refrigerator and heatpump. to
	Calculate the maximum efficiency of a cycle. Also student can learn calculating entropy change for a
	process, maximum available energy
CO5	Understand the basic laws of ideal gas and gas mixtures and power cycles.

Course Name: **ENGINEERING MECHANICS**

#	COURSE OUTCOMES
CO1	To analyze the basic concepts of rigid bodies subjected to different types of loads and supports.
CO2	To analyze the motion of the bodies considering friction and external loads.
CO3	To determine Centroids and area moment of inertia and centre of gravity and mass moment of inertia of simple and composite figures
CO4	To analyze the perfect frames using method of joints, method of sections & tension coefficient method for vertical, horizontal and inclined loads and COncepts of

	Mechanical vibrations. (Simple, compound and tensional pendulums
CO5	To analyze the motion of particle with and without considering forces

Course Name: ENGINEERING DRAWING FOR MECHANICAL ENGINEERS

#	COURSE OUTCOMES
CO1	Apply orthographic projection concepts to draw projections of right regular solids.
CO2	Make use of sectional planes to draw sectional views of a solid.
CO3	Apply isometric projection concepts to draw isometric projections of right regular solidsand sectioned solids
CO4	Construct Intersection curves when one right regular solid penetrates another rightregular solid.
CO5	Make use of perspective projection concepts to draw simple planes and right regular
	solids.

Course Name: MECHANICS OF SOLIDS LABORATORY

#	COURSE OUTCOMES
CO1	Analyze the stress-strain diagram for different materials using universal testing machine
CO2	Compare the hardness values for various materials using hardness testing machine
CO3	Determine modulus of elasticity, bending stresses and deflection for different beams
CO4	Estimate the stiffness and shear modulus of springs using tension test
CO5	Asses the toughness and impact strength using impact testing machine.

Course Name: COMPUTER AIDED DRAFTING LABORATORY

#	COURSE OUTCOMES
CO1	Identify the commands in AutoCAD software to draw required objects
CO2	Create the mechanical components in 2 – Dimensional using AutoCAD commands
CO3	Draw the projections of solids using AutoCAD commands
CO4	Draw the sectional views of solids using AutoCAD commands
CO5	Draw the orthographic views of solids from isometric views using AutoCAD commands

Course Name: QUANTITATIVE APTITUDE AND REASONING

#	COURSE OUTCOMES
CO1	Identify the problems by applying mathematical fundamentals
CO2	Apply the suitable logical methods to solve the problems
CO3	Solve the various problems by using quantitative mathematical fundamentals
CO4	Analyse the comprehensive data with logical ability

II B. TECH II SEM

Course Name: MECHANICS OF SOLIDS

#	COURSE OUTCOMES
CO1	Determine stress strain relationship subjected to axial, bending and torsional loads
CO2	Calculate shear and bending moment in simply supported beams, cantilever beams and overhanging beams
CO3	Calculate slope and deflection of beams subjected to loads.
CO4	Analyse strength of beams and sections and calculate flexural and shear stress.
CO5	Analyse and design Thick and Thin cylinders

Course Name: THERMAL ENGINEERING – I

#	COURSE OUTCOMES
CO1	Understand the concepts of the working of both S.I & D.I engines with the help of indicator diagrams
CO2	Understand the concepts of the working of both S.I & C.I engines with the help of valve and port timing diagrams
CO3	understand the fuel supply systems, cooling, lubrication and ignition systems
CO4	Understand the flame propagation inside cylinder, stages of combustion in S.I and C.I engines and knocking phenomenon in combustion process.
CO5	Understand the working of rotary air compressors and reciprocating air compressors.

Course Name: KINEMATICS OF MACHINES

#	COURSE OUTCOMES
CO1	Explain the various links of machines and mechanisms and find out difference
	between Machine and mechanism

CO2	Explain the various mechanisms used in machines
CO3	Understood different types of Steering mechanisms
CO4	Identify new and different mechanisms
CO5	Identify different types of GEAR TRAINS

Course Name: MANUFACTURING TECHNOLOGY

#	COURSE OUTCOMES
CO1	Select suitable material for preparing the patterns
CO2	Make use of moulding systems to prepare a product
CO3	Recommend the melting and solidification processes for designing the gatingsystem.
CO4	Identify the suitable special casting and welding processes used for the givenapplication
CO5	Identify the process parameters and defects to get quality product

Course Name: MACHINE DRAWING

#	COURSE OUTCOMES
CO1	Construct different materials used in engineering practice through conventional representation.
CO2	Develop skills related to the dimensioning, sectioning and development of views.
CO3	Apply suitable techniques to draw various parts of assembly drawing.
CO4	Make use of the orthographic and isometric projections to draw machine elements
CO5	Plan the part or assembly drawings as per the conventions.

Course Name: MECHANICS OF SOLIDS LABORATORY

#	COURSE OUTCOMES
CO1	Perform the experiment on UTM to determine the young's modulus for ductile materials and analyze the various points on stress strain diagram
CO2	Calculate the modulus of rigidity of ductile materials and calculate & compare the Hardness values for various materials.
CO3	Apply the concept of impact loading and to determine impact values for various Materials.
CO4	Perform the experiment on impact test [charpy] and Understand strength of the specimen
CO5	Perform the experiment on bending test and understand young's modulus and

Deflection of beam.	
---------------------	--

Course Name: THERMAL ENGINEERING LABORATORY

#	COURSE OUTCOMES
CO1	Understand the concepts on valve timing diagram of SI engine & CI engine
CO2	Understand the the influence of variations in TDC and BDC operations
CO3	Understand the concept of Calculate the IP,BP, brake thermal efficiency
CO4	Understand the concept of Calculate& compare the performance characteristics
CO5	Understand the basics and able to Analyze the efficiency of reciprocating airCOmpressor

Course Name: MANUFACTURING TECHNOLOGY LABORATORY

#	COURSE OUTCOMES
CO1	Identify various casting and welding equipments used in manufacturing processes
CO2	Choose suitable Sand properties of green sand to get quality specimen.
CO3	Determine the sequence of process to complete a job
CO4	Make use of various welding, foundry and forming equipments to prepare the job
CO5	Apply pattern making procedure for casting process

III B.TECH I SEM

Course Name: THERMAL ENGINEERING II

#	COURSE OUTCOMES
CO1	Apply power cycles and efficiency enhancement methods to generate power
CO2	Calculate the chimney height and draught for maximum discharge
CO3	Determine the characteristics of flow through nozzle
CO4	Construct the various velocity triangles of steam turbines
CO5	Analyze the working principle and performance of various thermal equipment

Course Name: **DYNAMICS OF MACHINERY**

#	COURSE OUTCOMES
CO1	Apply gyro-principles to stabilize the motion of vehicle.
CO2	Analyse the forces of the Flywheel in IC Engine
CO3	Estimate the range of speeds of various governors suitable for applications

CO4	Solve problems on balancing of rotating masses and reciprocating masses in V- engine and multi cylinder engines
CO5	Evaluate the critical speed of the shaft and simple vibration calculations of rotor system

Course Name: **DESIGN OF MACHINE ELEMENTS**

#	COURSE OUTCOMES
CO1	Apply the design process and theories of failure for designing different machine elements.
CO2	Solve the problems related to simple and complex components under different loads using
	Goodman's and Soderberg's criteria.
CO3	Estimate the stress induced in riveted and bolted joints under different load conditions
CO4	Analyze the failures in shafts, cotter joint and knuckle joint subjected to various loads.
CO5	Design the keys, rigid and flexible couplings as per the standards suitable to applications.

Course Name: FLUID MECHANICS AND HYDRAULIC MACHINES

#	COURSE OUTCOMES
GO 1	
CO1	Analyze properties of fluids under different conditions.
	Identify the fluid flow patterns using different equations
CO2	Determine fluid flow using devices and principles of fluid mechanics
002	
CO3	Apply boundary layer concepts to various types of flow and forces exerted by jet on vanes.
CO4	Estimate the performance of hydraulic turbines and pumps for various designs.
CO5	Estimate the performance of centrifugal pumps for various design.

Course Name: MACHINE TOOLS LABORATORY

#	COURSE OUTCOMES
CO1	Identify the various machining processes and machine tools
CO2	Classify various metal cutting machines such as lathe, milling, drilling, boring, grinding, shaping, Slotting and planer machines.
CO3	Choose the suitable tools for machining processes
CO4	compare the constructional features of machines suitable for various machining Operations.
CO5	Categorize the components of the machines

Course Name: PRODUCTION DRAWING PRACTICE

#	COURSE OUTCOMES
CO1	Construct the conventional representation of different materials used in engineering
	practice.
CO2	Identify the machine elements and designation of material.
CO3	Apply the drawing techniques to draw various parts of assembly drawing, tolerances,
	roughness.
CO4	Improve visualization ability of surface roughness and its indications with respect to the material surface
CO5	Plan the production drawings based on design constraints.

Course Name: HUMAN VALUES AND PROFESSIONAL ETHICS

#	COURSE OUTCOMES
CO1	Apply human values and ethics in professional life.
CO2	Develop the moral ideals to maintain good relationships with people.
CO3	Solve environmental related problems by keeping health of human being into consideration.
CO4	Make use of the fundamental rights and human rights in life for individual dignity
CO5	Build the sound health system both physically and mentally by practicing yoga,
	karate, sports etc.

III B.TECH II SEM

Course Name: **OPERATIONS RESEARCH**

#	COURSE OUTCOMES
CO1	Apply various Operations Research models and methods to solve real world problems
CO2	Solve Linear Programming, assignment, sequencing, game theory, queuing, transportation and project management problems for optimum solution
CO3	Evaluate various alternatives available to find optimal solution for real world problems
CO4	Choose the best strategies to maximize the profit or minimize loss in the presence of a COmpetitor
CO5	Classify the best operating policy for the efficient use of resources

Course Name: **DESIGN OF TRANSMISSION SYSTEMS**

#	COURSE OUTCOMES
CO1	Assess the type of stresses induced in crane hooks, C-clamps and drives subjected to various loadings.
CO2	Design different types of bearings for suitable applications.
CO3	Design springs and power screws under different load conditions as per the practical situation.
CO4	Solve the problems related to spur and helical gears for power transmission.
CO5	Analyze the stresses induced in IC engine parts subjected to various loads.

Course Name: **HEAT TRANSFER**

#	COURSE OUTCOMES
CO1	Apply laws of heat transfer in thermal analyses of engineering systems.
CO2	Calculate the amount of heat transfer in conduction, convection and radiation modes.
CO3	Discuss the concept of conduction heat transfer and its applications.
CO4	Analyze the free and forced convective heat transfer for fluids.
CO5	Analyze the concept of radiative heat transfer between black bodies and grey bodies.

Course Name: METAL FORMING PROCESS

#	COURSE OUTCOMES
CO1	Apply hot working and cold working processes to workpiece for obtaining a final product
CO2	Apply the mechanism of deformation for different metals
CO3	Analyze the effect of process parameters influencing metal forming
CO4	Identify the metal forming process used for given application
CO5	Examine effects of friction, lubrication and causes of common defects in metal forming

Course Name: NON CONVENTIONAL SOURCE OF ENERGY

#	COURSE OUTCOMES
CO1	Identify various conventional and non-conventional sources of energy.
CO2	Estimate the energy collection using suitable equipment
CO3	Compare different energy conversion systems within the available resources for
	better utilization

CO4	Make use of the suitable energy storage methods for real-time requirements
CO5	Analyze the advanced power generation systems like Magneto Hydro Dynamics and other
	methods for future requirements.

Course Name: **HEAT TRANSFER LABORATORY**

#	COURSE OUTCOMES
CO1	Analyze thermal conductivity in various materials.
CO2	Calculate heat transfer coefficient in various materials.
CO3	Select appropriate materials for improving effectiveness of heat transfer.
CO4	Test the performance and there by improve effectiveness of heat exchanger.
CO5	Calculate emissivity and Stefan's Boltzmann constant for various bodies through radiation.

Course Name: MATLAB PROGRAMMING

#	COURSE OUTCOMES
CO1	Understand the use of software tools for modelling and analysis ofmathematical concepts for engineering applications
CO2	calculate the inverse of any matrix using MATLAB
CO3	Model and analyze Monte-Carlo simulation for suitable applications
CO4	Assess the Standard Normal Distributionand its importance in engineeringapplications
CO5	Model and analyze simple engineering concepts and its importance inengineering applications

Course Name: CAD/CAM LABORATORY

#	COURSE OUTCOMES
CO1	Construct complex geometries of machine components in sketcher mode.
CO2	Create programs to generate analytical and synthetic curves used in engineering practice.
CO3	Plan 2D and 3D drawings based on design constraints
CO4	Applying CAD/CAM concept to product design and manufacturing.
CO5	Analyze G and M codes for turning and milling components.

IV B.TECH I SEM

Course Name: PRODUCTION AND OPERATIONS MANAGEMENT

#	COURSE OUTCOMES
CO1	Apply the knowledge in management tools to apply in technical organizations.
CO2	Apply forecasting techniques to predict future demand and other parameters
CO3	Make use of plant layout design to facilitate material flow and processing of a product in the most efficient manner through the shortest possible time.
CO4	Apply quality improvement techniques and methods for improvement of quality of product and process
CO5	Determine the inventory and to be able to apply selected techniques for its COntrol and management under different circumstances

Course Name: FINITE ELEMENT METHOD

#	COURSE OUTCOMES
CO1	Understand the concepts behind formulation methods in FEM
CO2	Identify the application and characteristics of FEA elements such as bars, beams, plane and isoparametric elements.
CO3	Develop element characteristic equation and generation of global equation.
CO4	Able to apply suitable boundary conditions to a global equation for bars, trusses, beams, circular shafts, heat transfer, fluid flow, axi symmetric and dynamic problems
CO5	Able to apply suitable boundary conditions to a global equation for solve them displacements, stress and strains induced

Course Name: INSTRUMENTATION AND CONTROL SYSTEMS

#	COURSE OUTCOMES
CO1	Recognize the importance of basic principles, configuration and functional description of measuring instruments.
CO2	Describe performance characteristics of an instrument when the device is exposed to measure dynamic inputs and error control.
CO3	Categorize the measuring instruments based on the principle of working with the physical parameters such as displacement, temperature and pressure.

CO4	Explain calibration of instruments for measurement of all types of mechanical parameters
CO5	Demonstrate working principle of level measuring devices for ascertaining liquid level and choose appropriate device for controlling fluid level in industrial applications.
CO6	Make use of appropriate instrument for measuring Speed, Acceleration and Vibration by considering different aspects.

Course Name: ADDITIVE MANUFACTURING

#	COURSE OUTCOMES
CO1	History and Development of Additive manufacturing, Applications, and RP data formats.
CO2	Basic Concept Reverse Engineering and Software's for Additive Manufacturing.
CO3	Principle, Process, Materials, Advantages of Solid and Liquid Based AM Systems.
CO4	Principle and Process of Selective Laser Sintering of Powder Based AM Systems
CO5	Principle, Process, Advantages, Limitations, Applications of BPM, SDM, AM systems

Course Name: INSTRUMENTATION AND CONTROL SYSTEMS LAB

#	COURSE OUTCOMES
CO1	Understand basic principles of instrumentation and control systems
CO2	Apply calibration of measuring instruments for linear and angular displacement. A1339.3: Understand calibration of measuring instruments for temperature
CO3	Apply calibration of measuring instruments of flow and speed measurement
CO4	Demonstrate working principle of level measuring devices for ascertaining liquid level and choose appropriate device for controlling fluid level in industrial applications.
CO5	Make use of appropriate instrument for measuring Speed, Acceleration and Vibration by considering different aspects.

Course Name: COMPUTER AIDED ENGINEERING LABORATORY

#	COURSE OUTCOMES
CO1	Apply mathematical skills in the design and analysis of model generations and analysis.

CO2	Exercise analytical skills in model verifications and interpretations of FEA results.
CO3	Apply knowledge from component design in projects
CO4	Detailing a conceptual design involves determining material specifications, Dimensions, tolerances, performance measures, etc
CO5	Understand the basic concepts of modelling for analysis and manufacturability.

Course Name: FUNDAMENTALS OF IOT

#	COURSE OUTCOMES
CO1	Analyze IoT applications using IoT enablers and connectivity layers, components.
CO2	Distinguish sensors and actuators in terms of their functions and applications
CO3	Interface I/O devices, Sensors using Arduino UNO
CO4	Develop Raspberry Pi Interfacing programs using pythonconcepts
CO5	Apply Raspberry Pi and Arduino Uno programming for IoT bases projects

IV B.TECH II SEM

Course Name: BASIC DATA STRUCTURES

#	COURSE OUTCOMES
CO1	Analyze the time and space complexities of algorithms
CO2	Apply various operations on linear data structures
CO3	Design searching and sorting techniques for a given application
CO4	Develop nonlinear programming for optimization techniques
CO5	Develop nonlinear programming for optimization techniques